BackgroundWomen with type 2 diabetes (T2D) are less likely to reach the goals for hemoglobin A1c compared with men, and have higher all-cause mortality. The risk of cardiovascular disease is elevated among both men and women with T2D, however, the risk has declined among men over recent years while it remains stationary in women. Reasons for these sex differences remain unclear, and guidelines for diabetes treatment do not differentiate between sexes. Possible causes for varying outcome include differences in physiology, treatment response, and psychological factors. This review briefly outlines sex differences in hormonal pathophysiology, and thereafter summarizes the literature to date on sex differences in disease course and outcome.MethodsSystematic searches were performed on PubMed using “sex”, “gender”, and various glucose-lowering therapies as keywords. Earlier reviews are summarized and results from individual studies are reported. Reference lists from studies were used to augment the search.ResultsThere is an increased risk of missing the diagnosis of T2D when screening women with only fasting plasma glucose instead of with an oral glucose tolerance test. The impact of various risk factors for complications may differ by sex. Efficacy and side effects of some glucose-lowering drugs differ between men and women. Men with T2D appear to suffer more microvascular complications, while women have higher morbidity and mortality in cardiovascular disease and also fare worse psychologically.ConclusionFew studies to date have focused on sex differences in T2D. Several questions demand further study, such as whether risk factors and treatment guidelines should be sex-specific. There is a need for clinical trials designed specifically to evaluate sex differences in efficacy and outcome of the available treatments.
SummaryMajor long-term complications in patients with diabetes are related to oxidative stress, caused by the hyperglycaemia characteristic for diabetes mellitus. The anti-oxidant coenzyme Q10 (CoQ10) has therefore been proposed as a beneficial supplement to diabetes treatment. Apart from its anti-oxidative function, CoQ10 appears to modulate immune functions by largely unknown mechanisms. The aim of this study was therefore to investigate the effect of CoQ10 on antimicrobial peptides and natural killer (NK) cells, both innate immune components implicated in the pathogenesis of diabetes and diabetes-associated long-term complications such as cardiovascular disease. We determined serum levels of antimicrobial peptides and the phenotype of NK cells isolated from peripheral blood of patients with type 1 (T1DM) or type 2 diabetes mellitus (T2DM) and from healthy controls. In addition, the same parameters were determined in diabetic patients after a 12-week period of CoQ10 supplementation. Two antimicrobial peptides, the human cathelicidin antimicrobial peptide (CAMP) and the human beta defensin 1 (hBD1), were reduced in serum from patients with T1DM. This defect was not reversible by CoQ10 supplementation. In contrast, CoQ10 reduced the levels of circulating hBD2 in these patients and induced changes in subset distribution and activation markers in peripheral NK cells. The results of the present study open up novel approaches in the prevention of long-term complications associated to T1DM, although further investigations are needed.
Diabetic foot ulcerations (DFUs) represent a major medical, social, and economic problem. Therapeutic options are restricted due to a poor understanding of the pathogenic mechanisms. The Notch pathway plays a pivotal role in cell differentiation, proliferation, and angiogenesis, processes that are profoundly disturbed in diabetic wounds. Notch signaling is activated upon interactions between membrane-bound Notch receptors (Notch 1–4) and ligands (Jagged 1–2 and Delta-like 1, 3, 4), resulting in cell-context-dependent outputs. Here, we report that Notch1 signaling is activated by hyperglycemia in diabetic skin and specifically impairs wound healing in diabetes. Local inhibition of Notch1 signaling in experimental wounds markedly improves healing exclusively in diabetic, but not in nondiabetic, animals. Mechanistically, high glucose levels activate a specific positive Delta-like 4 (Dll4)–Notch1 feedback loop. Using loss-of-function genetic approaches, we demonstrate that Notch1 inactivation in keratinocytes is sufficient to cancel the repressive effects of the Dll4–Notch1 loop on wound healing in diabetes, thus making Notch1 signaling an attractive locally therapeutic target for the treatment of DFUs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.