In the context of cellular origins, odontogenic epithelium and oral epithelium are the sources for junctional epithelium during development and during wound healing respectively. In contrast, both odontogenic and non-odontogenic mesenchyme contain the progenitors for gingival fibroblasts in developing tissues while in wounded tissues, gingival fibroblasts are derived from gingival connective tissues and comprise a heterogeneous population of cells with diverse properties and functions. Periodontal ligament, bone and cementum cell populations apparently originate from dental follicle progenitor cells during development, but during wound healing derive from ancestral cells in periodontal ligament and bone. Cellular differentiation in developing periodontium is governed in part by epithelial-mesenchymal interactions that generate specific signals which regulate selective cell populations in time and space. On the other hand, differentiation during wound healing and regeneration is regulated by a vast array of extracellular matrix informational molecules and by cytokines that induce both selective and non-selective responses in the different cell lineages and their precursors. Further, several important signalling systems are irretrievably lost after development is complete. Thus, in the context of cellular origins and differentiation, developing and wounded periodontal tissues exhibit fundamental differences. Future prospects for improved healing and regeneration of periodontal tissues may derive from identification and isolation of informational molecules that are stored in connective tissue matrices. These molecules and elucidation of their functions may open new perspectives in our understanding of the biology of periodontal wound healing and may provide novel approaches to periodontal regeneration.
Ability of online adaptive replanning is desirable to correct for interfraction anatomic changes. A full-scope replanning/reoptimization with the current planning techniques takes too long to be practical. A novel online replanning strategy to correct for interfraction anatomic changes in real time is presented. The scheme consists of three steps: (1) rapidly delineating targets and organs at risk on the computed tomography of the day by modifying original planning contours using robust tools in a semiautomatic manner, (2) online segment aperture morphing (SAM) (adjusting beam/ segment apertures) by applying the spatial relationship between the planning target contour and the apertures to the new target contour, and (3) performing segment weight optimization (SWO) for the new apertures if necessary. The entire scheme was tested for direct-aperture-based IMRT on representative prostate and abdomen cases. Dose volume histograms obtained with the online scheme are practically equivalent to those obtained with full-scope reoptimization. For the days of small to moderate organ deformations, only the SAM is necessary, while for the large deformation days, both SAM and SWO are required to adequately account for the deformation. Both the SAM and SWO programs can be completed within 1 min, and the overall process can be completed within 10 min. The proposed SAM-SWO scheme is practically comparable to full-scope reoptimization, but is fast enough to be implemented for on-line adaptive replanning, enabling dose-guided RT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.