Abstract:In order for organisations to keep up with the onslaught of challenges inherent in the knowledge era, they must continuously learn. From a normative perspective, groupware technologies facilitate organisational learning by providing a means of disseminating and codifying organisational knowledge. However, in practice, the potential learning benefits of groupware are rarely achieved. This paper aims to contribute to the fields of organisational learning, innovation and information systems by examining possible reasons for groupware failures, which lead to lost potential learning benefits and thus unsustainable advantage.
While big data technologies are growing rapidly and benefit a wide range of science and engineering domains, many barriers remain for the remote sensing community to fully exploit the benefits provided by these emerging powerful technologies. To overcome these barriers, this paper presents the in-depth experience gained when adopting a distributed computing framework -Hadoop HBase -for storage, indexing, and integration of large scale, high resolution laser scanning point cloud data. Four data models were conceptualized, implemented, and rigorously investigated to explore the advantageous features of distributed, key-value database systems. In addition, the comparison of the four models facilitated the reassessment of several well-known point cloud management techniques founded in traditional computing environments in the new context of the distributed, key-value database. The four models were derived from two row-key designs and two columns structures, thereby demonstrating various considerations during the development of a data solution for high-resolution, city-scale aerial laser scan for a portion of Dublin, Ireland. This paper presents lessons learned from the data model design and its implementation for spatial data management in a distributed computing framework. The study is a step towards full exploitation of powerful emerging computing assets for dense spatio-temporal data.
<p><strong>Abstract.</strong> Laser scanning data are increasingly available across the globe. To maximize the data's usability requires proper storage and indexing. While significant research has been invested in developing storage and indexing solutions for laser scanning point clouds (i.e. using the discrete form of the data), little attention has been paid to developing equivalent solutions for full waveform (FWF) laser scanning data, especially in a distributed computing environment. Given the growing availability of FWF sensors and datasets, FWF data management solutions are increasingly needed. This paper presents an attempt towards establishing a scalable solution for handling large FWF datasets by introducing the distributed computing solution for FWF data. The work involves a FWF database built atop HBase &ndash; the distributed database system running on Hadoop commodity clusters. By combining a 6-dimensional (6D) Hilbert spatial code and a temporal index into a compound indexing key, the database system is capable of supporting multiple spatial, temporal, and spatio-temporal queries. Such queries are important for FWF data exploration and dissemination. The proposed spatial decomposition at a fine resolution of 0.05<span class="thinspace"></span>m allows the storage of each LiDAR FWF measurement (i.e. pulse, waves, and points) on a single row of the database, thereby providing the full capabilities to add, modify, and remove each measurement record anatomically. While the feasibility and capabilities of the 6D Hilbert solution are evident, the Hilbert decomposition is not due to the complications from the combination of the data’s high dimensionality, fine resolution, and large spatial extent. These factors lead to a complex set of both attractive attributes and limitation in the proposed solution, which are described in this paper based on experimental tests using a 1.1 billion pulse LiDAR scan of a portion of Dublin, Ireland.</p>
This paper introduces a novel LiDAR point cloud data encoding solution that is compact, flexible, and fully supports distributed data storage within the Hadoop distributed computing environment. The proposed data encoding solution is developed based on Sequence File and Google Protocol Buffers. Sequence File is a generic splittable binary file format built in the Hadoop framework for storage of arbitrary binary data. The key challenge in adopting the Sequence File format for LiDAR data is in the strategy for effectively encoding the LiDAR data as binary sequences in a way that the data can be represented compactly, while allowing necessary mutation. For that purpose, a data encoding solution, based on Google Protocol Buffers (a language-neutral, cross-platform, extensible data serialisation framework) was developed and evaluated. Since neither of the underlying technologies is sufficient to completely and efficiently represent all necessary point formats for distributed computing, an innovative fusion of them was required to provide a viable data storage solution. This paper presents the details of such a data encoding implementation and rigorously evaluates the efficiency of the proposed data encoding solution. Benchmarking was done against a straightforward, naive text encoding implementation using a high-density aerial LiDAR scan of a portion of Dublin, Ireland. The results demonstrated a 6-times reduction in data volume, a 4-times reduction in database ingestion time, and up to a 5 times reduction in querying time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.