This article introduces an alignment-free clustering method in order to cluster all the 66 DORs sequentially diverse protein sequences. Two different methods are discussed: one is utilizing twenty standard amino acids (without grouping) and another one is using chemical grouping of amino acids (with grouping). Two grayscale images (representing two protein sequences by order pair frequency matrices) are compared to find the similarity index using morphology technique. We could achieve the correlation coefficients of 0.9734 and 0.9403 for without and with grouping methods respectively with the ClustalW result in the ND5 dataset, which are much better than some of the existing alignment-free methods. Based on the similarity index, the 66 DORs are clustered into three classes - Highest, Moderate and Lowest - which are seen to be best fitted for 66 DORs protein sequences. OR83b is the distinguished olfactory receptor expressed in divergent insect population which is substantiated through our investigation.
Joint damage in Rheumatoid Arthritis (RA) is assessed by manually inspecting and grading radiographs of hands and feet. This is a tedious task which requires trained experts whose subjective assessment leads to low inter-rater agreement. An algorithm which can automatically predict the joint level damage in hands and feet can help optimize this process, which will eventually aid the doctors in better patient care and research. In this paper, we propose a two-staged approach which amalgamates object detection and convolution neural networks with attention which can efficiently and accurately predict the overall and joint level narrowing and erosion from patients radiographs. This approach has been evaluated on hands and feet radiographs of patients suffering from RA and has achieved a weighted root mean squared error (RMSE) of 1.358 and 1.404 in predicting joint level narrowing and erosion Sharp/van der Heijde (SvH) scores which is 31% and 19% improvement with respect to the baseline SvH scores, respectively. The proposed approach achieved a weighted absolute error of 1.456 in predicting the overall damage in hands and feet radiographs for the patients which is a 79% improvement as compared to the baseline. Our method also provides an inherent capability to provide explanations for model predictions using attention weights, which is essential given the black box nature of deep learning models. The proposed approach was developed during the RA2 Dream Challenge hosted by Dream Challenges 1 and secured 4 th and 8 th position in predicting overall and joint level narrowing and erosion SvH scores from radiographs.
IMPORTANCE An automated, accurate method is needed for unbiased assessment quantifying accrual of joint space narrowing and erosions on radiographic images of the hands and wrists, and feet for clinical trials, monitoring of joint damage over time, assisting rheumatologists with treatment decisions. Such a method has the potential to be directly integrated into electronic health records. OBJECTIVESTo design and implement an international crowdsourcing competition to catalyze the development of machine learning methods to quantify radiographic damage in rheumatoid arthritis (RA). DESIGN, SETTING, AND PARTICIPANTSThis diagnostic/prognostic study describes the Rheumatoid Arthritis 2-Dialogue for Reverse Engineering Assessment and Methods (RA2-DREAM Challenge), which used existing radiographic images and expert-curated Sharp-van der Heijde (SvH) scores from 2 clinical studies (674 radiographic sets from 562 patients) for training (367 sets), leaderboard (119 sets), and final evaluation (188 sets). Challenge participants were tasked with developing methods to automatically quantify overall damage (subchallenge 1), joint space narrowing (subchallenge 2), and erosions (subchallenge 3). The challenge was finished on June 30, 2020. MAIN OUTCOMES AND MEASURESScores derived from submitted algorithms were compared with the expert-curated SvH scores, and a baseline model was created for benchmark comparison.Performances were ranked using weighted root mean square error (RMSE). The performance and reproductivity of each algorithm was assessed using Bayes factor from bootstrapped data, and further evaluated with a postchallenge independent validation data set. RESULTSThe RA2-DREAM Challenge received a total of 173 submissions from 26 participants or teams in 7 countries for the leaderboard round, and 13 submissions were included in the final evaluation. The weighted RMSEs metric showed that the winning algorithms produced scores that were very close to the expert-curated SvH scores. Top teams included Team Shirin for subchallenge 1 (weighted RMSE, 0.44), HYL-YFG (Hongyang Li and Yuanfang Guan) subchallenge 2 (weighted RMSE, 0.38), and Gold Therapy for subchallenge 3 (weighted RMSE, 0.43). Bootstrapping/Bayes factor approach and the postchallenge independent validation confirmed the reproducibility and the estimation concordance indices between final evaluation and postchallenge independent validation data set were 0.71 for subchallenge 1, 0.78 for subchallenge 2, and 0.82 for subchallenge 3. CONCLUSIONS AND RELEVANCEThe RA2-DREAM Challenge resulted in the development of algorithms that provide feasible, quick, and accurate methods to quantify joint damage in RA. (continued) Key Points Question Can a worldwide collaborative effort develop machine learning algorithms to quantify joint space narrowing and erosions automatically to improve the current visual inspection approach to radiography in rheumatoid arthritis (RA)? Findings This prognostic study assesses an international, crowdsourcing competition using scored radiographs of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.