The design of nanocarriers for cell-mediated drug delivery may differ from those used for conventional drug delivery systems. The literature review shows that nanocarriers could supplement sustained drug delivery to the macrophages, extended duration of action, reduced therapeutic dose, improved patient compliance, and reduced adverse effects of highly toxic, potent drugs. There is still a need to identify more specific receptors that are responsible for macrophage targeting. The identification of such receptors may also facilitate drug targeting to further specific parts of the body containing different types of macrophages.
The recent corona virus disease (COVID-19) outbreak has claimed the lives of many around the world and highlighted an urgent need for experimental strategies to prevent, treat and eradicate the virus. COVID-19, an infectious disease caused by a novel corona virus and no approved specific treatment is available yet. A vast number of promising antiviral treatments involving nanotechnology are currently under investigation to aid in the development of COVID-19 drug delivery. The prospective treatment options integrating the ever-expanding field of nanotechnology have been compiled, with the objective to show that these can be potentially developed for COVID-19 treatment. This review summarized the current state of knowledge, research priorities regarding the pandemic and post COVID-19. We also focus on the possible nanotechnology approaches that have proven to be successful against other viruses and the research agenda to combat COVID-19.
Cardiovascular disorders or cardiovascular diseases (CVD) are major illness associated with heart and blood vessels. Reactive oxygen species (ROS), generated during excessive oxidative stress, are responsible for the pathophysiology of various cardiovascular disorders including atherosclerosis, cardiac hypertrophy, cardiomyopathy, heart failure, ventricular remodeling, ischemia/reperfusion injury and myocardial infarction. Cellular "redox homeostasis" generally maintains the healthy physiology in cardiac myocytes and endothelial cells. However, during excessive oxidative stress body's endogenous system fails to maintain normal physiology hence antioxidant supplementation is necessary, which could scavenge the free radicals and other toxic radicals. Several antioxidants such as CoQ10, beta carotene, lycopene, quercetin, reserveterol, vitamin C and vitamin E have shown preventive and therapeutic benefits in different forms of CVD. However, poor biopharmaceutical properties and variable pharmacokinetics of several antioxidants limits their use as therapeutic agents. Hence delivery of stable antioxidants at their site of action is a need of current scenario. Several novel carriers based approaches have shown considerable benefits for the systemic and site specific delivery of antioxidants for the preventive and therapeutic treatment of several cardiovascular diseases. In the present review, conventional as well as novel antioxidants have been discussed with special emphasis for the treatment of CVD. Further, the current review also highlights the critical challenges for antioxidant delivery and various novel carriers (nanoformulations) including, liposomes and nanoparticles explored for their efficient delivery in the therapeutic management of CVD.
Dendrimers are hyperbranched, monodispersed macromolecules with multivalent functional end groups. Dendrimers have been explored as carrier for many drugs like anticancer, antiviral, antimalarial, antiprotozoal, anti tubercular drugs. Although a number of different types of dendrimers containing different core molecules, branching monomers and surface functional groups have been designed till date for drug delivery applications, yet the poly(propyleneimine) (PPI) and poly(amidoamine) (PAMAM) dendrimers have been the most explored dendrimers in this regard. In this review, we have summarized a comparative data on PPI and PAMAM dendrimers particularly relevant to their properties, synthesis, toxicity, biomedical applications and drug delivery attributes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.