Alemtuzumab (anti-CD52 mAb) provides long-lasting disease activity suppression in relapsing–remitting multiple sclerosis (RRMS). The objective of this study was to characterize the immunological reconstitution of T cell subsets and its contribution to the prolonged RRMS suppression following alemtuzumab-induced lymphocyte depletion. The study was performed on blood samples from RRMS patients enrolled in the CARE-MS II clinical trial, which was recently completed and led to the submission of alemtuzumab for U.S. Food and Drug Administration approval as a treatment for RRMS. Alemtuzumab-treated patients exhibited a nearly complete depletion of circulating CD4+ lymphocytes at day 7. During the immunological reconstitution, CD4+CD25+CD127low regulatory T cells preferentially expanded within the CD4+ lymphocytes, reaching their peak expansion at month 1. The increase in the percentage of TGF-β1–, IL-10–, and IL-4–producing CD4+ cells reached a maximum at month 3, whereas a significant decrease in the percentages of Th1 and Th17 cells was detected at months 12 and 24 in comparison with the baseline. A gradual increase in serum IL-7 and IL-4 and a decrease in IL-17A, IL-17F, IL-21, IL-22, and IFN-γ levels were detected following treatment. In vitro studies have demonstrated that IL-7 induced an expansion of CD4+CD25+CD127low regulatory T cells and a decrease in the percentages of Th17 and Th1 cells. In conclusion, our results indicate that differential reconstitution of T cell subsets and selectively delayed CD4+ T cell repopulation following alemtuzumab-induced lymphopenia may contribute to its long-lasting suppression of disease activity.
IFN-β-1b is a first-line immunomodulatory therapy for relapsing–remitting multiple sclerosis (RR MS). However, its effects on B cells have not been characterized. In vitro studies of B cells derived from RR MS patients revealed that IFN-β-1b decreases B cells’ stimulatory capacity, as detected by inhibition of the Ag-specific T cell proliferative response upon Ag presentation by IFN-β-1b–treated B cells. Our study has identified that IFN-β-1b inhibited B cells’ stimulatory capacity in RR MS patients and healthy controls through the suppression of CD40 and CD80 expression, whereas the MHC class I and II expression was not changed. IFN-β-1b in vitro treatment inhibited B cell secretion of IL-1β and IL-23 and induced IL-12 and IL-27. Supernatants transferred from IFN-β-1b–treated B cells inhibited Th17 cell differentiation, as they suppressed gene expression of the retinoic acid-related orphan nuclear hormone receptor C and IL-17A and secretion of IL-17A. In addition, IFN-β-1b induced B cells’ IL-10 secretion, which may mediate their regulatory effect. Studies of B cells derived from RR MS patients treated with recombinant s.c. injected IFN-β-1b revealed that they induced a significantly lower proliferative response in allogenic MLR than the B cells from untreated patients. Further confirming the IFN-β-1b in vitro-induced changes in B cell cytokine secretion, B cells derived from the IFN-β-1b–treated patients secreted significantly lower levels of IL-1β and IL-23 and higher levels of IL-12 and IL-27 in comparison with the B cells derived from untreated patients. We conclude that IFN-β-1b exerts its therapeutic effects in part by targeting B cells’ functions that contribute to the autoimmune pathogenesis of RR MS.
Protein ubiquitination regulates numerous cellular functions in eukaryotes. The prevailing view about the role of RING or U-box ubiquitin ligases (E3) is to provide precise positioning between the attached substrate and the ubiquitin-conjugating enzyme (E2). However, the mechanism of ubiquitin transfer remains obscure. Using the carboxyl terminus of Hsc70-interacting protein as a model E3, we show herein that although U-box binding is required, it is not sufficient to trigger the transfer of ubiquitin onto target substrates. Furthermore, additional regions of the E3 protein that have no direct contact with E2 play critical roles in mediating ubiquitin transfer from E2 to attached substrates. By combining computational structure modeling and protein engineering approaches, we uncovered a conformational flexibility of E3 that is required for substrate ubiquitination. Using an engineered version of the carboxyl terminus of Hsc70-interacting protein ubiquitin ligase as a research tool, we demonstrate a striking flexibility of ubiquitin conjugation that does not affect substrate specificity. Our results not only reveal conformational changes of E3 during ubiquitin transfer but also provide a promising approach to custom-made E3 for targeted proteolysis.Protein modification by ubiquitin and ubiquitin-like proteins is a common mechanism through which numerous cellular pathways are regulated (1). The canonical cascade of ubiquitination involves the action of three enzymes, termed E1, E2, and E3, which activate and then conjugate ubiquitin to its substrates (2, 3). The E3 ligase catalyzes the final step in ubiquitin transfer in a substrate-specific manner. Despite advances in understanding the enzymatic cascade of ubiquitination, the mechanism of ubiquitin transfer to the substrate remains an outstanding issue (4). In particular, the role of E3 ubiquitin ligases and how they adapt to progressively modified substrates to maintain specific ubiquitin chain topology is still a mystery.The known E3s belong to three protein families: HECT, RING, and U-box. HECT domain enzymes form a covalent intermediate with ubiquitin before the final transfer of ubiquitin to substrates. In contrast, RING and U-box E3s have been suggested to function as adaptors that position the substrate in close proximity to the E2-ubiquitin thioester (E2-Ub) (5). It has become common "wisdom" that the substrate has to be precisely positioned to get ubiquitinated (6). The positioning hypothesis originally predicted that E3 substrates would have a specific ubiquitination site. However, the absence of "consensus" ubiquitination sites has become apparent in an increasing list of E3 substrates (7-9). In addition, the crystal structures of several ubiquitination machinery components have revealed a puzzling gap (ϳ50 Å) between the substrate binding sites and the E2 active sites (10, 11). This raises a fundamental question in ubiquitin transfer. How does the ubiquitin molecule shuttle from the E2 to substrates? Though several interesting models for ubiquitin tra...
Haemophilus ducreyi, the etiological agent of chancroid, has a strict requirement for heme, which it acquires from its only natural host, humans. Previously, we showed that a vaccine preparation containing the native hemoglobin receptor HgbA purified from H. ducreyi class I strain 35000HP (nHgbA I ) and administered with Freund's adjuvant provided complete protection against a homologous challenge. In the current study, we investigated whether nHgbA I dispensed with monophosphoryl lipid A (MPL), an adjuvant approved for use in humans, offered protection against a challenge with H. ducreyi strain 35000HP expressing either class I or class II HgbA (35000HPhgbA I and 35000HPhgbA II , respectively). Pigs immunized with the nHgbA I /MPL vaccine were protected against a challenge from homologous H. ducreyi strain 35000HPhgbA I but not heterologous strain 35000HPhgbA II , as evidenced by the isolation of only strain 35000HPhgbA II from nHgbA I -immunized pigs. Furthermore, histological analysis of the lesions showed striking differences between mock-immunized and nHgbA I -immunized animals challenged with strains 35000HPhgbA I but not those challenged with strain 35000HPhgbA II . Mock-immunized pigs were not protected from a challenge by either strain. The enzyme-linked immunosorbent assay (ELISA) activity of the nHgbA I /MPL antiserum was lower than the activity of antiserum from animals immunized with the nHgbA I /Freund's vaccine; however, anti-nHgbA I from both studies bound whole cells of 35000HPhgbA I better than 35000HPhgbA II and partially blocked hemoglobin binding to nHgbA I . In conclusion, despite eliciting lower antibody ELISA activity than the nHgbA I /Freund's, the nHgbA I /MPL vaccine provided protection against a challenge with homologous but not heterologous H. ducreyi, suggesting that a bivalent HgbA vaccine may be needed.
The HIV epidemics in infants and adolescent women are linked. Young women of childbearing age are at high risk for HIV infection and, due to poor HIV testing rates and low adherence to antiretroviral therapy, are at high risk for mother-to-infant transmission. We hypothesize that HIV vaccine regimens initiated in early life would provide the necessary time frame to induce mature and highly functional Env-specific antibody responses that could potentially also protect against HIV acquisition later in life. The present study was designed to test two vaccine regimens, a clade C HIV Env protein vaccine (Env only) alone or combined with a modified vaccinia Ankara (MVA) vector expressing HIV Env (MVA/Env) for the induction and persistence of Env-specific antibody responses in an infant nonhuman primate model. Vaccination was initiated within the first week of life, with booster immunizations at weeks 6, 12, and 32. We demonstrate that both vaccine strategies were able to elicit durable Env-specific antibody responses that were enhanced by a late boost in infancy. Furthermore, we confirmed earlier data that intramuscular administration of the Env protein with the Toll-like receptor 7/8 (TLR7/8)-based adjuvant 3M-052 in stable emulsion (3M-052-SE) induced higher Env-specific antibody responses than vaccination with Env adjuvanted in Span85-Tween 80-squalene (STS) tested in a previous study. These results support the concept of early vaccination as a means to induce durable immune responses that may prevent HIV infection in adolescence at the onset of sexual debut. IMPORTANCE The majority of new HIV-1 infections occur in young adults, with adolescent women being 3 times more likely to acquire HIV than young men. Implementation of HIV prevention strategies has been less successful in this age group; thus, a vaccine given prior to adolescence remains a high priority. We propose that instead of starting HIV vaccination during adolescence, an HIV vaccine regimen initiated in early infancy, aligned with the well-accepted pediatric vaccine schedule and followed with booster immunizations, will provide an alternative means to reduce HIV acquisition in adolescence. Importantly, the long window of time between the first infant vaccine dose and the adolescence vaccine dose will allow for the maturation of highly functional HIV Env-specific antibody responses. Our study provides evidence that early life vaccination induces durable Env-specific plasma IgG responses that can be boosted to further improve the quality of the antibody response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.