Hemicellulolytic microorganisms play a significant role in nature by recycling hemicellulose, one of the main components of plant polysaccharides. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of xylan, the major constituent of hemicellulose. The use of these enzymes could greatly improve the overall economics of processing lignocellulosic materials for the generation of liquid fuels and chemicals. Recently cellulase-free xylanases have received great attention in the development of environmentally friendly technologies in the paper and pulp industry. In microorganisms that produce xylanases low molecular mass fragments of xylan and their positional isomers play a key role in regulating its biosynthesis. Xylanase and cellulase production appear to be regulated separately, although the pleiotropy of mutations, which causes the elimination of both genes, suggests some linkage in the synthesis of the two enzymes. Xylanases are found in a cornucopia of organisms and the genes encoding them have been cloned in homologous and heterologous hosts with the objectives of overproducing the enzyme and altering its properties to suit commercial applications. Sequence analyses of xylanases have revealed distinct catalytic and cellulose binding domains, with a separate non-catalytic domain that has been reported to confer enhanced thermostability in some xylanases. Analyses of three-dimensional structures and the properties of mutants have revealed the involvement of specific tyrosine and tryptophan residues in the substrate binding site and of glutamate and aspartate residues in the catalytic mechanism. Many lines of evidence suggest that xylanases operate via a double displacement mechanism in which the anomeric configuration is retained, although some of the enzymes catalyze single displacement reactions with inversion of configuration. Based on a dendrogram obtained from amino acid sequence similarities the evolutionary relationship between xylanases is assessed. In addition the properties of xylanases from extremophilic organisms have been evaluated in terms of biotechnological applications.
Hemicellulolytic microorganisms play a significant role in nature by recycling hemicellulose, one of the main components of plant polysaccharides. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of xylan, the major constituent of hemicellulose. The use of these enzymes could greatly improve the overall economics of processing lignocellulosic materials for the generation of liquid fuels and chemicals. Recently cellulase-free xylanases have received great attention in the development of environmentally friendly technologies in the paper and pulp industry. In microorganisms that produce xylanases low molecular mass fragments of xylan and their positional isomers play a key role in regulating its biosynthesis. Xylanase and cellulase production appear to be regulated separately, although the pleiotropy of mutations, which causes the elimination of both genes, suggests some linkage in the synthesis of the two enzymes. Xylanases are found in a cornucopia of organisms and the genes encoding them have been cloned in homologous and heterologous hosts with the objectives of overproducing the enzyme and altering its properties to suit commercial applications. Sequence analyses of xylanases have revealed distinct catalytic and cellulose binding domains, with a separate non-catalytic domain that has been reported to confer enhanced thermostability in some xylanases. Analyses of three-dimensional structures and the properties of mutants have revealed the involvement of specific tyrosine and tryptophan residues in the substrate binding site and of glutamate and aspartate residues in the catalytic mechanism. Many lines of evidence suggest that xylanases operate via a double displacement mechanism in which the anomeric configuration is retained, although some of the enzymes catalyze single displacement reactions with inversion of configuration. Based on a dendrogram obtained from amino acid sequence similarities the evolutionary relationship between xylanases is assessed. In addition the properties of xylanases from extremophilic organisms have been evaluated in terms of biotechnological applications.
Eighteen bacterial strains were isolated from soil samples and screened for alkaline, thermophilic lipase production. Pseudomonas fluorescens NS2W was selected and its production of lipase was optimized in shake flasks using a statistical experimental design. Cell growth and lipase production were studied in shake flasks and in a 1-l fermenter in the optimized medium. Maximum lipase yields were 69.7 and 68.7 U ml(-1), respectively. The optimized medium resulted in about a five-fold increase in the enzyme production, compared to that obtained in the basal medium. The lipase had an optimal activity at pH 9.0 and was stable over a wide pH range of 3-11 with more than 70% activity retention. The lipase had an optimal activity at 55 degrees C and was stable up to 60 degrees C with more than 70% activity retention for at least 2 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.