Polymerisation reactions conducted inside cells must be compatible with the complex intracellular environment, which contains numerous molecules and functional groups that could potentially prevent or quench polymerisation reactions. Here we report a strategy for directly synthesising unnatural polymers in cells through free radical photo-polymerisation using a number of biocompatible acrylic and methacrylic monomers. This offers a platform to manipulate, track and control cellular behaviour by the in cellulo generation of macromolecules that have the ability to alter cellular motility, label cells by the generation of fluorescent polymers for long-term tracking studies, as well as the generation within cells of a variety of nanostructures. It is remarkable that free radical polymerisation chemistry can take place within such complex cellular environments and this demonstration opens up a multitude of new possibilities for how chemists can modulate cellular function and behaviour and for understanding cellular behaviour in response to the generation of free radicals.
An ideal vascular substitute, especially in <6 mm diameter applications, is a major clinical essentiality in blood vessel replacement surgery. Blood vessels are structurally complex and functionally dynamic tissue, with minimal regeneration potential. These have composite extracellular matrix (ECM) and arrangement. The interplay between ECM components and tissue specific cells gives blood vessels their specialized functional attributes. The core of vascular tissue engineering and regeneration relies on the challenges in creating vascular conduits that match native vessels and adequately regenerate in vivo. Out of numerous vascular regeneration concerns, the relevance of ECM emphasizes much attention toward appropriate choice of scaffold material and further scaffold development strategies. The review is intended to be focused on the various approaches of scaffold materials currently in use in vascular regeneration and current state of the art. Scaffold of choice in vascular tissue engineering ranges from natural to synthetic, decellularized, and even scaffold free approach. The applicability of tubular scaffold for in vivo vascular regeneration is under active investigation. A patent conduit with an ample endothelial luminal layer that can regenerate in vivo remains an unanswered query in the field of small diameter vascular tissue engineering. Besides, scaffolds developed for vascular regeneration, should aim at providing functional substitutes for use in a regenerative approach from the laboratory bench to patient bedside.
Heterotopic ossification (HO) is a pathological process resulting in aberrant bone formation and often involves synovial lined tissues. During this process, mesenchymal progenitor cells undergo endochondral ossification. Nonetheless, the specific cell phenotypes and mechanisms driving this process are not well understood, in part due to the high degree of heterogeneity of the progenitor cells involved. Here, using a combination of lineage tracing and single-cell RNA sequencing (scRNA-seq), we investigated the extent to which synovial/tendon sheath progenitor cells contribute to heterotopic bone formation. For this purpose, Tppp3 (tubulin polymerization-promoting protein family member 3)-inducible reporter mice were used in combination with either Scx (Scleraxis) or Pdgfra (platelet derived growth factor receptor alpha) reporter mice. Both tendon injury- and arthroplasty-induced mouse experimental HO models were utilized. ScRNA-seq of tendon-associated traumatic HO suggested that Tppp3 is an early progenitor cell marker for either tendon or osteochondral cells. Upon HO induction, Tppp3 reporter+ cells expanded in number and partially contributed to cartilage and bone formation in either tendon- or joint-associated HO. In double reporter animals, both Pdgfra+Tppp3+ and Pdgfra+Tppp3- progenitor cells gave rise to HO-associated cartilage. Finally, analysis of human samples showed a substantial population of TPPP3-expressing cells overlapping with osteogenic markers in areas of heterotopic bone. Overall, these data demonstrate that synovial/tendon sheath progenitor cells undergo aberrant osteochondral differentiation and contribute to HO after trauma.
Numerous intrinsic factors regulate mesenchymal progenitor commitment to a specific cell fate, such as osteogenic or adipogenic lineages. Identification and modulation of novel intrinsic regulatory factors represent an opportunity to harness the regenerative potential of mesenchymal progenitors. In the present study, the transcription factor (TF) ZIC1 was identified to be differentially expressed among adipose- compared to skeletal-derived mesenchymal progenitor cells. We observed that ZIC1 overexpression in human mesenchymal progenitors promotes osteogenesis and prevents adipogenesis. ZIC1 knockdown demonstrated the converse effects on cell differentiation. ZIC1 misexpression was associated with altered Hedgehog signaling, and the Hedgehog antagonist cyclopamine reversed the osteo/adipogenic differentiation alterations associated with ZIC1 overexpression. Finally, human mesenchymal progenitor cells with or without ZIC1 overexpression were implanted in an ossicle assay in NOD-SCID gamma mice. ZIC1 overexpression led to significantly increased ossicle formation in comparison to the control, as assessed by radiographic and histologic measures. Together, these data suggest that ZIC1 represents a transcription factor at the center of osteo/adipogenic cell fate determinations – findings that have relevance in the fields of stem cell biology and therapeutic regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.