Introduction: The primary concern in the placement of ramal bone screws is the blind nature of the procedure, as there is a thick, mobile layer of soft tissue over the bone; also, the ramus is not a uniplanar structure but is swerving like a propeller blade. The purpose of this study was to evaluate the possibility of establishing clinical guidelines based on visible dental and soft-tissue landmarks for safe, reliable, and accurate insertion of ramal bone screws. Aims and Objectives: Our primary objective was to evaluate the angle formed between the appropriate direction of ramal-implant placement and the line tangential to the buccal surfaces of the first and second permanent molars. Our secondary objective was to evaluate the average distance of the neurovascular bundle from the tip of the bone screw. Materials and Methods: We obtained 80 cone beam computed tomography (CBCT) samples, marked reference lines and points on selected axial and coronal sections, and evaluated the following parameters using the software’s linear- and angular-measurement device: the angle between the appropriate direction of ramal bone screw placement and the line tangential to the buccal surfaces of the first and second permanent molars; and the proximity of the bone screw to the neurovascular bundle. Results: The angle between the constructed line of insertion and the occlusal line, as evaluated from our study, was 19.04 (SD ± 6.89) degrees. The proximity of the neurovascular bundle from the screw is 7.1773 (SD ± 1.73988) mm. Conclusion: We can conclude that ramal bone screws can be placed with a comfortable margin of safety.
Introduction: Buccal shelf bone screws have become increasingly popular as a preferred method of skeletal anchorage in the mandibular arch. Anatomic variations and clinical experience suggest that width and slope of the bone at buccal shelf vary in different population groups, with some individual variations. Aims and Objectives: The objective of this study was to evaluate angulation of the bone screw of mandibular buccal shelf area, total bone width, thickness of the cortical bone, and proximity to neurovascular structures. Materials and Methods: Cone-beam computed tomography scans were used to obtain measurements of the buccal shelf region of 35 patients (18 females, 17 males; mean age, 23.6 years). Measurements were taken at three locations (L1, L2, and L3) and total bone width was measured at two levels from the cementoenamel junction (CEJ, H1 and H2). Bone screws were virtually placed and their proximity evaluated from digitally traced inferior alveolar neurovascular bundle. Results: Permissible angulation for placement of buccal shelf bone screw considering the safety distance from the root and avoiding excessive buccal projection to minimize cheek irritation was found to be 74.48 (SD ± 4.26). Total bone width was maximum at the distobuccal cusp of mandibular second molar (L3H2; 6.40 ± 1.35) when measured at the level of 8 mm from the CEJ. Bone screws were well within the safety range from causing any iatrogenic damage to the inferior alveolar neurovascular bundle at all the three aforementioned locations. Conclusion: Thus, area buccal to the mandibular second molar region seems to be the most favorable site for placement of buccal shelf bone screws in Indian patients.
Introduction The palatal bone is a suitable site for mini-implant placement due to it being a “rootless area” with dense bone. This application has increased with mini-implant-assisted rapid palatal expansion becoming the preferred method of expansion. It is necessary to measure the vertical bone height with a reasonable accuracy, at the implant insertion site, to utilize the maximum available bone support, and to avoid the risk of perforations. As an accepted method, full-volume cone-beam computed tomography (CBCT) scan is advised for the same. This requires an additional procedure, further, radiation exposure, and cost to the patient. The aim of the study was to establish the utility of lateral cephalogram as a simple and reliable method to measure palatal bone thickness for placement of mini-implants in the 1st premolar and 1st molar region, which are the most common sites of mini-implant placement. Materials and Methods A total of 30 CBCT scans and digital lateral cephalograms of patients were selected and analyzed at the 1st premolar and molar region and were statistically evaluated using Student’s t-test and Wilcoxon rank-sum test. Results The results obtained indicated a highly significant correlation between the measurements obtained on lateral cephalograms at both the 1st premolar and 1st molar areas, P < 0.001. Conclusion The data presented show that lateral cephalometry provides a reliable assessment of the quantity of vertical bone for paramedian insertion of a palatal implant.
Incorporation of mini screws in a conventional RPE appliance transforms it into a MARPE appliance. Mini screws ensure maximum skeletal expansion, keeping the dental expansion and resultant side effects to a minimum. Various designs have been recommended by authors around the globe; exclusively bone borne, teethbone borne and tissue-bone borne with two/ four mini screws in the assembly.Paramedian area 3 mm lateral to the suture in 1 st premolar region is considered the most appropriate site for placement of mini screws. Anterior screws are placed in the rugae area while posterior screws in the para-midsagittal area. This article (case series) describes three cases treated with MARPE appliance designs and protocols.
The present paper describes a technique for intermittent replacement of missing anterior edentulous spans which in simple, logical, less time consuming and cost-effective. The objective was to incorporate a rigid framework as a long edentulous span had to be replaced, along with miniscrews at two different angulations, thus restricting the effect of perioral and masticatory forces in an effective manner
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.