Screening was done of some plants of importance in the Ayurvedic system of traditional medicine used in India to treat enteric diseases. Fifty four plant extracts (methanol and aqueous) were assayed for their activity against multi-drug resistant Salmonella typhi. Strong antibacterial activity was shown by the methanol extracts of Aegle marmelos, Salmalia malabarica, Punica granatum, Myristica fragrans, Holarrhena antidysenterica, Terminalia arjuna and Triphal (mixture of Emblica of fi cinalis, Terminalia chebula and Terminalia belerica). Moderate antimicrobial activity was shown by Picorhiza kurroa, Acacia catechu, Acacia nilotica, Cichorium intybus, Embelia ribes, Solanum nigrum, Carum copticum, Apium graveolens, Ocimum sanctum, Peucedanum graveolens and Butea monosperma.
Sesamol is a phenolic component of sesame seed oil, which has been established as an antioxidant and also possesses potential for hepatoprotection. However, its protective role in carbon tetrachloride (CCl4 ) induced sub-chronic hepatotoxicity has not been studied. Limited oral bioavailability (BA) and rapid elimination (as conjugates) in rats is reported for sesamol. Considering its significant antioxidant potential and compromised BA, we packaged sesamol into solid lipid nanoparticles (S-SLNs) to enhance its hepatoprotective bioactivity. S-SLNs prepared by microemulsification method were nearly spherical in shape with an average particle size of 120.30 nm and their oral administration at 8 mg/kg body weight (BW) showed significantly (p < 0.001) better hepatoprotection than free sesamol (FS) and a well established hepatoprotective antioxidant silymarin [SILY (25 mg/kg BW); p < 0.05) in CCl4 induced sub-chronic liver injury in rats. Evaluations were done in terms of histological changes in the liver tissue, liver injury markers (serum alanine aminotransferase, serum aspartate aminotransferase, and serum lactate dehydrogenase); oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and proinflammatory response marker (tumor necrosis factor-alpha).
BackgroundSesamol, a component of sesame seed oil, exhibited significant antioxidant activity in a battery of in vitro and ex vivo tests including lipid peroxidation induced in rat liver homogenates. Latter established its potential for hepatoprotection. However, limited oral bioavailability, fast elimination (as conjugates) and tendency towards gastric irritation/toxicity (especially forestomach of rodents) may limit its usefulness. Presently, we packaged sesamol into solid lipid nanoparticles (S-SLNs) to enhance its biopharmaceutical performance and compared the efficacy with that of free sesamol and silymarin, a well established hepatoprotectant, against carbon tetrachloride induced hepatic injury in rats, post induction. A self recovery group in which no treatment was given was used to observe the self-healing capacity of liver.MethodsS-SLNs prepared by microemulsification method were administered to rats post-treatment with CCl4 (1 ml/kg body weight (BW) twice weekly for 2 weeks, followed by 1.5 ml/kg BW twice weekly for the subsequent 2 weeks). Liver damage and recovery on treatment was assessed in terms of histopathology, serum injury markers (alanine aminotransferase, aspartate aminotransferase), oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and a pro-inflammatory response marker (tumor necrosis factor alpha).ResultS-SLNs (120.30 nm) at a dose of 8 mg/kg BW showed significantly better hepatoprotection than corresponding dose of free sesamol (FS; p < 0.001). Effects achieved with S-SLNs were comparable with silymarin (SILY), administered at a dose of 25 mg/kg BW. Self recovery group confirmed absence of regenerative capacity of hepatic tissue, post injury.ConclusionUse of lipidic nanocarrier system for sesamol improved its efficiency to control hepatic injury. Enhanced effect is probably due to: a) improved oral bioavailability, b) controlled and prolonged effect of entrapped sesamol and iii) reduction in irritation and toxicity, if any, upon oral administration. S-SLNs may be considered as a therapeutic option for hepatic ailments as effectiveness post induction of liver injury, is demonstrated presently.
Muramyl dipeptide (MDP) was an important compound conferring protection to mice against the lethal malaria parasite Plasmodium berghei. The mode of protection of this compound was studied using different humoral and cellular parameters. The observations indicate that MDP boosts both humoral antibody response as well as delayed type hypersensitivity reactions, but as far as phagocytosis by macrophages is concerned, malarial mice are already maximally stimulated and MDP makes a marginal difference in immune phagocytosis only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.