This review deals with the antisense technology that, together, forms a very powerful tool to inhibit gene expression and may be used for studying gene function (functional genomics) and for therapeutic purpose (antisense gene therapy). Antisense oligonucleotides block translation of target mRNAs in a sequence specific manner, either by steric blocking of translation or by destruction of the bound mRNA via RNase-H enzyme. For proper designing, accessible sites of the target RNA for binding antisense oligonucleotides have to be identified. Whether being used as an experimental reagent or pharmaceuticals, several problems or drawbacks have to be overcome for successful applications. Toward this direction, various modifications of sugar, bases and phosphate backbone of antisense oligonucleotides have been attempted. In recent years valuable progress has been achieved through the development of advanced cellular delivery systems and novel chemically modified nucleotides with improved properties such as enhanced serum stability, higher target affinity and low toxicity. These qualities and the specificity of binding make this technique a potentially powerful therapeutic tool for gene targeting and/ or expression regulation. This review discusses the basis of structural design, mode of action, chemical modification, enhanced cellular uptake, therapeutic application and future possibilities in the field of advanced antisense technology.
The aim of this study was to characterise the molecular mechanisms of transcriptional regulation of Differentially Expressed Genes (DEGs) in rice coleoptiles under anoxia by identifying motifs that are common in the promoter region of co-regulated genes. Un-changed DEGs (<2 fold and >-2), up-regulated DEGs (>or=2 fold) and down-regulated DEGs (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.