Sensory deprivation, such as developmental hearing loss, leads to an adjustment of synaptic and membrane properties throughout the central nervous system. These changes are thought to compensate for diminished sound-evoked activity. This model predicts that compensatory changes should be synergistic with one another along each functional pathway. To test this idea, we examined the excitatory thalamic drive to two types of cortical inhibitory interneurons that display differential effects in response to developmental hearing loss. The inhibitory synapses made by fast-spiking (FS) cells are weakened by hearing loss, whereas those made by low threshold-spiking (LTS) cells remain strong but display greater short-term depression (Takesian et al. 2010). Whole-cell recordings were made from FS or LTS interneurons in a thalamocortical brain slice, and medial geniculate (MG)-evoked postsynaptic potentials were analyzed. Following hearing loss, MG-evoked net excitatory potentials were smaller than normal at FS cells but larger than normal at LTS cells. Furthermore, MG-evoked excitatory potentials displayed less short-term depression at FS cells and greater short-term depression at LTS cells. Thus deprivation-induced adjustments of excitatory synapses onto inhibitory interneurons are cell-type specific and parallel the changes made by the inhibitory afferents.
MicroRNAs (miRNAs) are short, non-coding, conserved, oligonucleotides that are regulatory in nature and are often dysregulated in many cancers including prostate cancer. Depending on the level of complementarity between the miRNA and mRNA target, they can either inhibit translation or degrade the target mRNA. MiRNAs expression is specific to the type of cancer, its stage and level of metastasis, making miRNAs potential stage-specific biomarkers of cancer. Recent research has shown that these miRNAs have the potential to be a diagnostic and prognostic non-invasive biomarker for various cancers including prostate cancer. Various miRNAs have been reported as novel biomarkers for prostate cancer therapy. However, there is inconsistency in the data reported and no overlapping expression pattern could be found. In this review, we have highlighted the most consistently reported dysregulated miRNAs in prostate cancer from the existing literature and discussed the currently available data on their role in regulating the hallmarks of prostate cancer. These four most consistently reported dysregulated miRNAs viz. miRNA-141, miRNA-375, miRNA-221 and miRNA-21 need to be further validated in terms of their regulatory potential in regulating various pathways important for prostate cancer management.
Nephew (2010) Multivalent epigenetic marks confer microenvironmentresponsive epigenetic plasticity to ovarian cancer cells, Epigenetics, 5:8,[716][717][718][719][720][721][722][723][724][725][726][727][728][729]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.