During the early stages of an emerging disease outbreak, governments are required to make critical decisions on how to respond appropriately, despite limited data being available to inform these decisions. Analytical risk assessment is a valuable approach to guide decision-making on travel restrictions and border measures during the early phase of an outbreak, when transmis-
Background Estimating community level scabies prevalence is crucial for targeting interventions to areas of greatest need. The World Health Organisation recommends sampling at the unit of households or schools, but there is presently no standardised approach to scabies prevalence assessment. Consequently, a wide range of sampling sizes and methods have been used. As both prevalence and drivers of transmission vary across populations, there is a need to understand how sampling strategies for estimating scabies prevalence interact with local epidemiology to affect the accuracy of prevalence estimates. Methods We used a simulation-based approach to compare the efficacy of different scabies sampling strategies. First, we generated synthetic populations broadly representative of remote Australian Indigenous communities and assigned a scabies status to individuals to achieve a specified prevalence using different assumptions about scabies epidemiology. Second, we calculated an observed prevalence for different sampling methods and sizes. Results The distribution of prevalence in subpopulation groups can vary substantially when the underlying scabies assignment method changes. Across all of the scabies assignment methods combined, the simple random sampling method produces the narrowest 95% confidence interval for all sample sizes. The household sampling method introduces higher variance compared to simple random sampling when the assignment of scabies includes a household-specific component. The school sampling method overestimates community prevalence when the assignment of scabies includes an age-specific component. Discussion Our results indicate that there are interactions between transmission assumptions and surveillance strategies, emphasizing the need for understanding scabies transmission dynamics. We suggest using the simple random sampling method for estimating scabies prevalence. Our approach can be adapted to various populations and diseases.
BackgroundEstimating scabies prevalence in communities is crucial for identifying the communities with high scabies prevalence and guiding interventions. There is no standardisation of sampling strategies to estimate scabies prevalence in communities, and a wide range of sampling sizes and methods have been used. The World Health Organization recommends household sampling or, as an alternative, school sampling to estimate community-level prevalence. Due to varying prevalence across populations, there is a need to understand how sampling strategies for estimating scabies prevalence interact with scabies epidemiology to affect accuracy of prevalence estimates.MethodsWe used a simulation-based approach to compare the efficacy of different sampling methods and sizes. First, we generate synthetic populations with Australian Indigenous communities’ characteristics and then, assign a scabies status to individuals to achieve a specified prevalence using different assumptions about scabies epidemiology. Second, we calculate an observed prevalence for different sampling methods and sizes.ResultsThe distribution of prevalence in population groups can vary substantially when the underlying scabies assignment method changes. Across all of the scabies assignment methods combined, the simple random sampling method produces the narrowest 95% confidence interval for all sampling percentages. The household sampling method introduces higher variance compared to simple random sampling when the assignment of scabies includes a household-specific component. The school sampling method overestimates community prevalence when the assignment of scabies includes an age-specific component.DiscussionOur results indicate that there are interactions between transmission assumptions and surveillance strategies, emphasizing the need for understanding scabies transmission dynamics. We suggest using the simple random sampling method for estimating scabies prevalence. Our approach can be adapted to various populations and diseases.Author summaryScabies is a parasitic infestation that is commonly observed in underprivileged populations. A wide range of sampling sizes and methods have been used to estimate scabies prevalence. With differing key drivers of transmission and varying prevalence across populations, it can be challenging to determine an effective sampling strategy. In this study, we propose a simulation approach to compare the efficacy of different sampling methods and sizes. First, we generate synthetic populations and then assign a scabies status to individuals to achieve a specified prevalence using different assumptions about scabies epidemiology. Second, we calculate an observed prevalence for different sampling methods and sizes. Our results indicate that there are interactions between transmission assumptions and surveillance strategies. We suggest using the simple random sampling method for estimating prevalence as it produces the narrowest 95% confidence interval for all sampling sizes. We propose guidelines for determining a sample size to achieve a desired level of precision in 95 out 100 samples, given estimates of the population size and a priori estimates of true prevalence. Our approach can be adapted to various populations, informing an appropriate sampling strategy for estimating scabies prevalence with confidence.
Background Scabies is a parasitic infestation with high global burden. Mass drug administrations (MDAs) are recommended for communities with a scabies prevalence of >10%. Quantitative analyses are needed to demonstrate the likely effectiveness of MDA recommendations. In this study, we compare the effectiveness of differing MDA strategies, supported by improved treatment access, on scabies prevalence in Monrovia, Liberia. Methods We developed an agent-based model of scabies transmission calibrated to demographic and epidemiological data from Monrovia. We used this model to compare the effectiveness of MDA scenarios for achieving scabies elimination and reducing scabies burden, as measured by time until recrudescence following delivery of an MDA and disability-adjusted-life-years (DALYs) averted. We also investigated the additional impact of improving access to scabies treatment following delivery of an MDA. Results Our model showed that 3 rounds of MDA delivered at 6-month intervals and reaching 80% of the population could reduce prevalence below 2% for 3 years following the final round, before recrudescence. When MDAs were followed by increased treatment uptake, prevalence was maintained below 2% indefinitely. Increasing the number of and coverage of MDA rounds increased the probability of achieving elimination and the DALYs averted. Conclusions Our results suggest that acute reduction of scabies prevalence by MDA can support a transition to improved treatment access. This study demonstrates how modelling can be used to estimate the expected impact of MDAs by projecting future epidemiological dynamics and health gains under alternative scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.