The deposition and properties of sputtered iridium oxide films (SIROFs) using water vapor as a reactive gas constituent are investigated for their potential as high‐charge‐capacity neural stimulation electrodes. Systematic investigation through a series of optical and electrochemical measurements reveals that the incorporation of water vapor as a reactive gas constituent, along with oxygen, alters the reduction–oxidation (redox) state of the plasma as well as its morphology and the electrochemical characteristics, including the cathodal charge‐storage capacity (CSCc) and charge‐injection capacity (CIC), of the SIROF. An apparent optimal O2:H2O gas ratio of 1:3 produced SIROF with a CSCc of 182.0 mC cm−2 μm−1 (median, Q1 = 172.5, Q3 = 193.4, n = 15) and a CIC of 3.57 mC cm−2 (median, Q1 = 2.97, Q3 = 4.58, n = 12) for 300‐nm‐thick films. These values are higher than those obtained with SIROFs deposited using no water vapor by a factor of 2.3 and 1.7 for the CSCc and CIC, respectively. Additionally, the SIROF showed minimal changes in electrochemical characteristics over 109 pulses of constant current stimulation and showed no indication of cytotoxicity toward primary cortical neurons in a cell viability assay. These results warrant investigation of the chronic recording and stimulation capabilities of the SIROF for implantable microelectrode arrays.
Gyriform mammals display neurophysiological and neural network activity that other species exhibit only in rudimentary or dissimilar form. However, neural recordings from large mammals such as the pig can be anatomically hindered and pharmacologically suppressed by anesthetics. This curtails comparative inferences. To mitigate these limitations, we set out to modify electrocorticography, intracerebral depth and intracortical recording methods to study the anesthetized pig. In the process, we found that common forms of infused anesthesia such as pentobarbital or midazolam can be neurophysiologic suppressants acting in dose-independent fashion relative to anesthetic dose or brain concentration. Further, we corroborated that standard laboratory conditions may impose electrical interference with specific neural signals. We thus aimed to safeguard neural network integrity and recording fidelity by developing surgical, anesthesia and noise reduction methods and by working inside a newly designed Faraday cage, and evaluated this from the point of view of neurophysiological power spectral density and coherence analyses. We also utilized novel silicon carbide electrodes to minimize mechanical disruption of single-neuron activity. These methods allowed for the preservation of native neurophysiological activity for several hours. Pig electrocorticography recordings were essentially indistinguishable from awake human recordings except for the small segment of electrical activity associated with vision in conscious persons. In addition, single-neuron and paired-pulse stimulation recordings were feasible simultaneously with electrocorticography and depth electrode recordings. The spontaneous and stimulus-elicited neuronal activities thus surveyed can be recorded with a degree of precision similar to that achievable in rodent or any other animal studies and prove as informative as unperturbed human electrocorticography.
Objective. Trauma induced by the insertion of microelectrodes into cortical neural tissue is a significant problem. Further, micromotion and mechanical mismatch between microelectrode probes and neural tissue is implicated in an adverse foreign body response (FBR). Hence, intracortical ultra-microelectrode probes have been proposed as alternatives that minimize this FBR. However, significant challenges in implanting these flexible probes remain. We investigated the insertion mechanics of amorphous silicon carbide (a-SiC) probes with a view to defining probe geometries that can be inserted into cortex without buckling. Approach. We determined the critical buckling force of a-SiC probes as a function of probe geometry and then characterized the buckling behavior of these probes by measuring force-displacement responses during insertion into agarose gel and rat cortex. Main Results. Insertion forces for a range of probe geometries were determined and compared with critical buckling forces to establish geometries that should avoid buckling during implantation into brain. The studies show that slower insertion speeds reduce the maximum insertion force for single-shank probes but increase cortical dimpling during insertion of multi-shank probes. Significance. Our results provide a guide for selecting probe geometries and insertion speeds that allow unaided implantation of probes into rat cortex. The design approach is applicable to other animal models where insertion of intracortical probes to a depth of 2 mm is required.
Traditional power sources for implantable devices, such as packaged internal batteries, suffer from bulkiness, limited cycle lifetime, and patient discomfort due to the need for periodic replacement surgery. Supercapacitors that directly utilize bodily fluids as electrolytes may serve as alternative power sources that are compact, durable, and patient-friendly. In this work, we present high-performance micro-supercapacitors that operate stably in physiological electrolytes for their potential as implantable miniature power sources. Sputtered iridium oxide films (SIROFs) produced using water-oxygen plasmas are employed as micro-supercapacitor electrodes and characterized in phosphate-buffered saline (PBS) and an inorganic model of interstitial fluid (model-ISF). The SIROF micro-supercapacitors exhibit a high volumetric capacitance of 425 F cm-3 (113 F g-1) in PBS and 223 F cm-3 (59.0 F g-1) in model-ISF, and an energy density of 59.1 mWh cm-3 (15.7 mWh g-1) in PBS and 30.9 mWh cm-3 (8.2 mWh g-1) in model-ISF. These devices show stability over 100,000 charging-discharging cycles without loss of capacitance in these electrolytes. Polyethylene glycol coatings on SIROF are also investigated as a potential means of controlling biomolecule absorption and enhancing biocompatibility. This work provides a step toward implantable micro-supercapacitors that directly use the biological fluids as electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.