Multisite implantable electrode arrays serve as a tool to understand cortical network connectivity and plasticity. Furthermore, they enable electrical stimulation to drive plasticity, study motor/sensory mapping, or provide network input for controlling brain-computer interfaces. Neurobehavioral rodent models are prevalent in studies of motor cortex injury and recovery as well as restoration of auditory/visual cues due to their relatively low cost and ease of training. Therefore, it is important to understand the chronic performance of relevant electrode arrays in rodent models. In this report, we evaluate the chronic recording and electrochemical performance of 16-channel Utah electrode arrays, the current state-of-the-art in pre-/clinical cortical recording and stimulation, in rat motor cortex over a period of 6 mo. The single-unit active electrode yield decreased from 52.8 ± 10.0 ( week 1) to 13.4 ± 5.1% ( week 24). Similarly, the total number of single units recorded on all electrodes across all arrays decreased from 106 to 15 over the same time period. Parallel measurements of electrochemical impedance spectra and cathodic charge storage capacity exhibited significant changes in electrochemical characteristics consistent with development of electrolyte leakage pathways over time. Additionally, measurements of maximum cathodal potential excursion indicated that only a relatively small fraction of electrodes (10-35% at 1 and 24 wk postimplantation) were capable of delivering relevant currents (20 µA at 4 nC/ph) without exceeding negative or positive electrochemical potential limits. In total, our findings suggest mainly abiotic failure modes, including mechanical wire breakage as well as degradation of conducting and insulating substrates. NEW & NOTEWORTHY Multisite implantable electrode arrays serve as a tool to record cortical network activity and enable electrical stimulation to drive plasticity or provide network feedback. The use of rodent models in these fields is prevalent. We evaluated chronic recording and electrochemical performance of 16-channel Utah electrode arrays in rat motor cortex over a period of 6 mo. We primarily observed abiotic failure modes suggestive of mechanical wire breakage and/or degradation of insulation.
The deposition and properties of sputtered iridium oxide films (SIROFs) using water vapor as a reactive gas constituent are investigated for their potential as high‐charge‐capacity neural stimulation electrodes. Systematic investigation through a series of optical and electrochemical measurements reveals that the incorporation of water vapor as a reactive gas constituent, along with oxygen, alters the reduction–oxidation (redox) state of the plasma as well as its morphology and the electrochemical characteristics, including the cathodal charge‐storage capacity (CSCc) and charge‐injection capacity (CIC), of the SIROF. An apparent optimal O2:H2O gas ratio of 1:3 produced SIROF with a CSCc of 182.0 mC cm−2 μm−1 (median, Q1 = 172.5, Q3 = 193.4, n = 15) and a CIC of 3.57 mC cm−2 (median, Q1 = 2.97, Q3 = 4.58, n = 12) for 300‐nm‐thick films. These values are higher than those obtained with SIROFs deposited using no water vapor by a factor of 2.3 and 1.7 for the CSCc and CIC, respectively. Additionally, the SIROF showed minimal changes in electrochemical characteristics over 109 pulses of constant current stimulation and showed no indication of cytotoxicity toward primary cortical neurons in a cell viability assay. These results warrant investigation of the chronic recording and stimulation capabilities of the SIROF for implantable microelectrode arrays.
Objective. Clinical applications of implantable microelectrode arrays are currently limited by device failure due to, in part, mechanical and electrochemical failure modes. To overcome this challenge, there is significant research interest in the exploration of novel array architectures and encapsulation materials. Amorphous silicon carbide (a-SiC) is biocompatible and corrosion resistant, and has recently been employed as a coating on biomedical devices including planar microelectrode arrays. However, to date, the three-dimensional Utah electrode array (UEA) is the only array architecture which has been approved by the food and drug administration (FDA) for long-term human trials. Approach. Here, we demonstrate, for the first time, that UEAs can be fabricated with a-SiC encapsulation and sputtered iridium oxide film (SIROF) electrode coatings, and that such arrays are capable of singleunit recordings over a 30 week implantation period in rat motor cortex. Over the same period, we carried out electrochemical measurements, including voltage transients, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS), to evaluate potential failure modes. Furthermore, we evaluated chronic foreign body response via fluorescence immunohistochemistry following device explantation. Main results. During the indwelling period, we observed a reduction in active electrode yield percentage from 94.6 ± 5.4 (week 1) to 16.4 ± 11.5% (week 30). While the average active electrode yield showed a steady reduction, it is noteworthy that 3 out of 8 UEAs recorded greater than 60% active electrode yield at all times through 24 weeks and 1 out of 8 UEAs recorded greater than 60% active electrode yield at all times through the whole implantation period. Significance. In total, these findings further suggest that a-SiC may serve as a mechanically and electrochemically stable device encapsulation alternative to polymeric coatings such as Parylene-C. 4 Denotes equal contribution.
We have characterized the in vitro and in vivo extracellular neural recording and stimulation properties of ruthenium oxide (RuOx) based microelectrodes. Cytotoxicity and functional neurotoxicity assays were carried out to confirm the in vitro biocompatibility of RuOx. Material extract assays, in accordance to ISO protocol "10993-5: Biological evaluation of medical devices", revealed no significant effect on neuronal cell viability or the functional activity of cortical networks. In vitro microelectrode arrays (MEAs), with indium tin oxide (ITO) sites modified with sputtered iridium oxide (IrOx) and RuOx in a single array, were developed for a direct comparison of electrochemical and recording performance of RuOx to ITO and IrOx deposited microelectrode sites. The impedance of the RuOx-coated electrodes measured by electrochemical impedance spectroscopy was notably lower than that of ITO electrodes, resulting in robust extracellular recordings from cortical networks in vitro. We found comparable signal-to-noise ratios (SNRs) for RuOx and IrOx, both significantly higher than the SNR for ITO. RuOx-based MEAs were also fabricated and implanted in the rat motor cortex to demonstrate manufacturability of the RuOx processing and acute recording capabilities in vivo. We observed single-unit extracellular action potentials with a SNR >22, representing a first step for neurophysiological recordings in vivo with RuOx based microelectrodes.
We have investigated the deposition and electrochemical properties of sputtered ruthenium oxide coatings for neural stimulation and recording electrodes. A combination of oxygen and water vapor was used as a reactive gas mixture during DC magnetron sputtering from a ruthenium metal target. The sputtering plasma was monitored by optical emission spectroscopy to determine the reactive species present and confirm the control of plasma chemistry by reactive gas flow rates into the deposition chamber. The effect of the O2:H2O gas ratio on the microstructure and electrochemical properties of the ruthenium oxide were studied in detail. We employed a combination of surface characterization techniques, including scanning electron microscopy, x‐ray diffraction, and x‐ray photoelectron spectroscopy, to understand the relationship between plasma chemistry and the microstructure of the films produced under different gas flow conditions. Electrochemical characterization included cyclic voltammetry, electrochemical impedance spectroscopy, and voltage transient measurements, performed on planar ruthenium oxide electrodes with a geometric surface area of 1960 μm2. At an O2:H2O gas flow rate ratio of 1:3, a cathodal charge‐storage capacity per unit film thickness of 228.7 mC cm−2 μm−1 (median, Q1 = 134.5, Q3 = 236.6, n = 15) and a charge‐injection capacity (0.6 V anodal interpulse bias) of 7.4 mC cm−2 (median, Q1 = 6.9, Q3 = 8.3, n = 15) were obtained in phosphate buffered saline. The charge‐injection capacity of ruthenium oxide sputtered with water vapor in the reactive plasma is comparable with sputtered iridium oxide (SIROF) and higher than reported values for porous TiN, a commonly employed high‐surface area stimulation electrode coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.