This paper reports on the combined analysis of seismocardiogram (SCG) and gyrocardiogram (GCG) recordings. An inertial measurement unit (IMU) consisting of a three-axis micro-electromechanical (MEMS) accelerometer and a three-axis MEMS gyroscope is used to record heart-induced mechanical vibrations from the chest wall of the subjects. An electrocardiogram and an impedance cardiogram (ICG) sensor are also used as references for segmenting the cardiac cycles and recording the aortic valve opening and closure (AO and AC) events, respectively. A simplified model is proposed to explain the mechanical coupling of the chest wall to the IMU. Correlations and time differences are analyzed for the annotation of GCG and its first derivative with respect to ICG and SCG as references. Experimental results indicate a precise identification of systolic points such as the AO and AC events. The left ventricular ejection time and pre-ejection period metrics calculated from gyroscope recordings are also shown to accurately track their corresponding trends acquired from ICG signals. Waveform similarity analyses indicate that the first derivative of GCG has a better similarity with SCG than the GCG signal itself. Experimental results also suggest that interdevice differences in GCG recordings would need to be addressed before this technology can gain widespread application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.