Opioid use after kidney transplant has been shown to be a risk factor for chronic opioid use, which leads to an increased risk of mortality. The purpose of this study was to evaluate the early impact of a multimodal pain regimen and education quality improvement program on opioid use after kidney transplant 2 months after implementation. This was a retrospective, single‐center analysis of post‐operative opioid use, comparing the average daily Morphine milligram equivalents (MME) of the patients who received education on opioids and a multimodal pain regimen (preoperative TAP/QL block, scheduled APAP and gabapentin) compared to a historical control group. Despite having no differences in pre‐transplant opioid exposure, daily and overall inpatient opioid utilization was significantly reduced in the multimodal pain protocol cohort (38.6 vs 8.0 MME/day; P < .001); 5% of patients in the multimodal pain protocol cohort were discharged with an opioid prescription, compared to 96% of controls (P < .001). Our early results demonstrate that a multimodal pain protocol can effectively and dramatically reduce short‐term opioid utilization in kidney transplant recipients.
Background: Many CpGs become hyper or hypo-methylated with age. Multiple methods have been developed by Horvath et al. to estimate DNA methylation (DNAm) age including Pan-tissue, Skin & Blood, PhenoAge, and GrimAge. Pan-tissue and Skin & Blood try to estimate chronological age in the normal population whereas PhenoAge and GrimAge use surrogate markers associated with mortality to estimate biological age and its departure from chronological age. Here, we applied Horvath's four methods to calculate and compare DNAm age in 499 subjects with type 1 diabetes (T1D) from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study using DNAm data measured by Illumina EPIC array in the whole blood. Association of the four DNAm ages with development of diabetic complications including cardiovascular diseases (CVD), nephropathy, retinopathy, and neuropathy, and their risk factors were investigated. Results: Pan-tissue and GrimAge were higher whereas Skin & Blood and PhenoAge were lower than chronological age (p < 0.0001). DNAm age was not associated with the risk of CVD or retinopathy over 18-20 years after DNAm measurement. However, higher PhenoAge (β = 0.023, p = 0.007) and GrimAge (β = 0.029, p = 0.002) were associated with higher albumin excretion rate (AER), an indicator of diabetic renal disease, measured over time. GrimAge was also associated with development of both diabetic peripheral neuropathy (OR = 1.07, p = 9.24E−3) and cardiovascular autonomic neuropathy (OR = 1.06, p = 0.011). Both HbA1c (β = 0.38, p = 0.026) and T1D duration (β = 0.01, p = 0.043) were associated with higher PhenoAge. Employment (β = − 1.99, p = 0.045) and leisure time (β = − 0.81, p = 0.022) physical activity were associated with lower Pan-tissue and Skin & Blood, respectively. BMI (β = 0.09, p = 0.048) and current smoking (β = 7.13, p = 9.03E−50) were positively associated with Skin & Blood and GrimAge, respectively. Blood pressure, lipid levels, pulse rate, and alcohol consumption were not associated with DNAm age regardless of the method used. Conclusions: Various methods of measuring DNAm age are sub-optimal in detecting people at higher risk of developing diabetic complications although some work better than the others.
To evaluate the contemporary prevalence of diabetic peripheral neuropathy (DPN) in participants with type 1 diabetes in the T1D Exchange Clinic Registry throughout the U.S. RESEARCH DESIGN AND METHODSDPN was assessed with the Michigan Neuropathy Screening Instrument Questionnaire (MNSIQ) in adults with ‡5 years of type 1 diabetes duration. A score of ‡4 defined DPN. Associations of demographic, clinical, and laboratory factors with DPN were assessed. RESULTSAmong 5,936 T1D Exchange participants (mean 6 SD age 39 6 18 years, median type 1 diabetes duration 18 years [interquartile range 11, 31], 55% female, 88% non-Hispanic white, mean glycated hemoglobin [HbA 1c ] 8.1 6 1.6% [65.3 6 17.5 mmol/mol]), DPN prevalence was 11%. Compared with those without DPN, DPN participants were older, had higher HbA 1c , had longer duration of diabetes, were more likely to be female, and were less likely to have a college education and private insurance (all P < 0.001). DPN participants also were more likely to have cardiovascular disease (CVD) (P < 0.001), worse CVD risk factors of smoking (P 5 0.008), hypertriglyceridemia (P 5 0.002), higher BMI (P 5 0.009), retinopathy (P 5 0.004), reduced estimated glomerular filtration rate (P 5 0.02), and Charcot neuroarthropathy (P 5 0.002). There were no differences in insulin pump or continuous glucose monitor use, although DPN participants were more likely to have had severe hypoglycemia (P 5 0.04) and/or diabetic ketoacidosis (P < 0.001) in the past 3 months. CONCLUSIONSThe prevalence of DPN in this national cohort with type 1 diabetes is lower than in prior published reports but is reflective of current clinical care practices. These data also highlight that nonglycemic risk factors, such as CVD risk factors, severe hypoglycemia, diabetic ketoacidosis, and lower socioeconomic status, may also play a role in DPN development.Diabetic neuropathy is a prevalent complication in patients with diabetes and a major cause of morbidity and mortality (1). Among the various forms of diabetic neuropathy, distal symmetric polyneuropathy (DPN) and diabetic autonomic neuropathies are by far the most studied (1).
Attention plays a critical role in action selection. However, the role of attention in eye movements is complicated as these movements can be either voluntary or involuntary, with, in some circumstances (antisaccades), these two actions competing with each other for execution. But attending to the location of an impending eye movement is only one facet of attention that may play a role in eye movement selection. In two experiments, we investigated the effect of arousal on voluntary eye movements (antisaccades) and involuntary eye movements (prosaccadic errors) in an antisaccade task. Arousal, as caused by brief loud sounds and indexed by changes in pupil diameter, had a facilitation effect on involuntary eye movements. Involuntary eye movements were both significantly more likely to be executed and significantly faster under arousal conditions (Experiments 1 & 2), and the influence of arousal had a specific time course (Experiment 2). Arousal, one form of attention, can produce significant costs for human movement selection as potent but unplanned actions are benefited more than planned ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.