Background Allergen-specific immunotherapy is the only mode of therapy that has been demonstrated to offer a cure in patients with IgE-mediated respiratory allergies. Objective We sought to demonstrate the safety and efficacy of timothy grass (TG) and dust mite (DM) dual sublingual immunotherapy (SLIT) and to begin to investigate the immune mechanisms involved in successful immunotherapy with multiple allergens. Methods The safety and efficacy of dual SLIT with TG and DM in children and adults with demonstrated allergies to TG and DM were investigated in a single-center, randomized, double-blind, controlled phase I study. Thirty subjects received either TG and DM dual SLIT (n = 20) or placebo (n = 10). Immune parameters were evaluated for differentiation of desensitized subjects from control subjects. Results Subjects treated with dual SLIT had decreased rhinoconjunctivitis scores (P < .001) and medication use scores (P < .001) and reduced responses to TG and DM allergen based on results of skin prick tests or nasal disk challenges (P < .01 and P < .001, respectively) compared with placebo-treated control subjects. An increase in TG- and DM-specific IgG4 levels, reduced allergen-specific IgE levels, and subsequent basophil activation were observed in the active treatment group. Dual SLIT promoted allergen-specific suppressive CD4+CD25highCD127lowCD45RO+ forkhead box protein 3 (Foxp3)+ memory regulatory T cells with reduced DNA methylation of CpG sites within the Foxp3 locus. Conclusion The results of this pilot study suggest that dual SLIT could be an effective means to treat subjects with sensitivities to a variety of allergens and that long-term tolerance might be induced by epigenetic modifications of Foxp3 in memory regulatory T cells.
Rationale: Basophils contribute to anaphylaxis and allergies. We examined the utility of assessing basophil-associated surface antigens (CD11b/CD63/CD123/CD203c/CD294) in characterizing and monitoring subjects with nut allergy. Methods: We used flow cytometry to analyze basophils at baseline (without any activation) and after ex vivo stimulation of whole blood by addition of nut or other allergens for 2, 10, and 30 min. We also evaluated whether basophil expression of CD11b/CD63/CD123/CD203c/CD294 was altered in subjects treated with anti-IgE monoclonal antibody (omalizumab) to reduce plasma levels of IgE. Results: We demonstrate that basophil CD203c levels are increased at baseline in subjects with nut allergy compared to healthy controls (13 subjects in each group, p < 0.0001). Furthermore, we confirm that significantly increased expression of CD203c occurs on subject basophils when stimulated with the allergen to which the subject is sensitive and can be detected rapidly (10 min of stimulation, n = 11, p < 0.0008). In 5 subjects with severe peanut allergy, basophil CD203c expression following stimulation with peanut allergen was significantly decreased (p < 0.05) after 4 and 8 weeks of omalizumab treatment but returned toward pretreatment levels after treatment cessation. Conclusions: Subjects with nut allergy show an increase of basophil CD203c levels at baseline and following rapid ex vivo stimulation with nut allergen. Both can be reduced by omalizumab therapy. These results highlight the potential of using basophil CD203c levels for baseline diagnosis and therapeutic monitoring in subjects with nut allergy.
Virus-specific cytotoxic T-lymphocyte (CTL) responses
BackgroundEosinophilic esophagitis (EoE) is characterized by the inflammation of the esophagus and the infiltration of eosinophils into the esophagus, leading to symptoms such as dysphagia and stricture formation. Systemic immune indicators like eotaxin and fibroblast growth factor were evaluated for possible synergistic pathological effects. Moreover, blood cells, local tissue, and plasma from EoE and control subjects were studied to determine if the localized disease was associated with a systemic effect that correlated with presence of EoE disease.MethodReal-time polymerase chain reaction from peripheral blood mononuclear cells (PBMC), immunohistochemistry from local esophageal biopsies, fluid assays on plasma, and fluorescence-activated cell sorting on peripheral blood cells from subjects were used to study the systemic immune indicators in newly diagnosed EoE (n = 35), treated EoE (n = 9), Gastroesophageal reflux disease (GERD) (n = 8), ulcerative colitis (n = 5), Crohn's disease (n = 5), and healthy controls (n = 8).ResultOf the transcripts tested for possible immune indicators, we found extracellular signal-regulated kinase (ERK), Bcl-2, bFGF (basic fibroblast growth factor), and eotaxin levels were highly upregulated in PBMC and associated with disease presence of EoE. Increased FGF detected by immunohistochemistry in esophageal tissues and in PBMC was correlated with low levels of pro-apoptotic factors (Fas, Caspase 8) in PBMC from EoE subjects. Plasma-derived bFGF was shown to be the most elevated and most specific in EoE subjects in comparison to healthy controls and disease control subjects.ConclusionWe describe for the first time a possible mechanism by which increased FGF is associated with inhibiting apoptosis in local esophageal tissues of EoE subjects as compared to controls. Eotaxin and FGF signaling pathways share activation through the ERK pathway; together, they could act to increase eosinophil activation and prolong the half-life of eosinophils in local tissues of the esophagus in EoE subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.