Aim:This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species.Materials and Methods:A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR) for detection of khs (kievitone hydratase) and pelA (pectate degrading enzyme)genes.Results:The recovery rate of yeasts from sausage was 20% (2/10) followed by kareish cheese, processed cheese, and butter 10% (1/10) each as well as raw milk 9% (9/100), and fruit yoghurt 30% (6/20). Different yeast species were recovered, namely, Candida kefyr (5 isolates), Saccharomyces cerevisiae (4 isolates), Candida intermedia (3 isolates), Candida tropicalis (2 isolates), Candida lusitaniae (2 isolates), and Candida krusei (1 isolate). khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa.Conclusion:The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food.
Background Biofilm-related infections are difficult to be treated because of higher resistance to antimicrobial agents. Current study aims to characterize the influence of zinc oxide nanoparticles (ZnO-NPs) on both S. aureus susceptibility to antibiotics and pathogenesis. Methods The influence of ZnO-NPs on biofilm formation by S. aureus was characterized by the crystal violet and tube assay. The synergistic effect of ZnO-NPs in combination with antibiotics on S. aureus was characterized using the checkerboard method. The effect of ZnO-NPs on S. aureus cell surface hydrophobicity and blood hemolysis was investigated. RT-qPCR was used to investigate the effect of ZnO-NPs on the expression of biofilm related genes (icaA, icaR and sarA), katA and sigB. The impact of ZnO-NPs on S. aureus pathogenesis was evaluated using mice infection model. Results ZnO-NPs exhibited a good antibiofilm activity against S. aureus. The findings indicate a synergistic antibiofilm effect of combination between ZnO-NPs and tested antibiotics. ZnO-NPs were capable of decreasing S. aureus cell surface hydrophobicity which could account for observed decrease in bacterial biofilm forming capacity. Moreover, ZnO-NPs-treated bacteria exhibited a significant decrease in blood hemolysis relative to control untreated S. aureus. The expression of biofilm related genes was significantly repressed in ZnO-NPs treated bacteria as compared to untreated cells. Finally, the effect of ZnO-NPs on S. aureus pathogenesis was investigated using mice infection model where ZnO-NPs accelerated healing of wounds in mice as compared to control untreated mice. Conclusions Present data support the efficiency of ZnO-NPs as antibiofilm agent in treatment of S. aureus infections. This study recommends the incorporation of ZnO-NPs as adjuvant with other antibiotics targeting S. aureus based on the promising findings obtained herein in order to control infection with this pathogen.
Background Staphylococcus aureus is a leading cause of human infections. The spread of antibiotic-resistant staphylococci has driven the search for novel strategies to supersede antibiotics use. Thus, targeting bacterial virulence rather than viability could be a possible alternative. Results The influence of celastrol on staphyloxanthin (STX) biosynthesis, biofilm formation, antibiotic susceptibility and host pathogenesis in S. aureus has been investigated. Celastrol efficiently reduced STX biosynthesis in S. aureus. Liquid chromatography-mass spectrometry (LC–MS) and molecular docking revealed that celastrol inhibits STX biosynthesis through its effect on CrtM. Quantitative measurement of STX intermediates showed a significant pigment inhibition via interference of celastrol with CrtM and accumulation of its substrate, farnesyl diphosphate. Importantly, celastrol-treated S. aureus was more sensitive to environmental stresses and human blood killing than untreated bacteria. Similarly, inhibition of STX upon celastrol treatment rendered S. aureus more susceptible to membrane targeting antibiotics. In addition to its anti-pigment capability, celastrol exhibits significant anti-biofilm activity against S. aureus as indicated by crystal violet assay and microscopy. Celastrol-treated cells showed deficient exopolysaccharide production and cell hydrophobicity. Moreover, celastrol markedly synergized the action of conventional antibiotics against S. aureus and reduced bacterial pathogenesis in vivo using mice infection model. These findings were further validated using qRT-PCR, demonstrating that celastrol could alter the expression of STX biosynthesis genes as well as biofilm formation related genes and bacterial virulence. Conclusions Celastrol is a novel anti-virulent agent against S. aureus suggesting, a prospective therapeutic role for celastrol as a multi-targeted anti-pathogenic agent.
Background Antimicrobial resistance is growing substantially, which necessitates the search for novel therapeutic options. Terbinafine, an allylamine antifungal agent that exhibits a broad spectrum of activity and is used in the treatment of dermatophytosis, could be a possible option to disarm S. aureus virulence. Methods Terbinafine inhibitory effect on staphyloxanthin was characterized by quantitative measurement of staphyloxanthin intermediates and molecular docking. The effect of terbinafine on S. aureus stress survival was characterized by viable counting. The anti-biofilm activity of terbinafine on S. aureus was assessed by the crystal violet assay and microscopy. Changes in S. aureus membrane following treatment with terbinafine were determined using Fourier transform infrared (FTIR) analysis. The synergistic action of terbinafine in combination with conventional antibiotics was characterized using the checkerboard assay. qRT-PCR was used to evaluate the impact of terbinafine on S. aureus gene expression. The influence of terbinafine on S. aureus pathogenesis was investigated in mice infection model. Results Terbinafine inhibits staphyloxanthin biosynthesis through targeting dehydrosqualene desaturase (CrtN). Docking analysis of terbinafine against the predicted active site of CrtN reveals a binding energy of − 9.579 kcal/mol exemplified by the formation of H-bonds, H-arene bonds, and hydrophobic/hydrophilic interactions with the conserved amino acids of the receptor pocket. Terbinafine treated S. aureus was more susceptible to both oxidative and acid stress as well as human blood killing as compared to untreated cells. Targeting staphyloxanthin by terbinafine rendered S. aureus more sensitive to membrane acting antibiotics. Terbinafine interfered with S. aureus biofilm formation through targeting cell autoaggregation, hydrophobicity, and exopolysaccharide production. Moreover, terbinafine demonstrated a synergistic interaction against S. aureus when combined with conventional antibiotics. Importantly, terbinafine attenuated S. aureus pathogenesis using mice infection model. qRT-PCR revealed that terbinafine repressed expression of the transcriptional regulators sigB, sarA, and msaB, as well as icaA in S. aureus. Conclusions Present findings strongly suggest that terbinafine could be used safely and efficiently as an anti-virulent agent to combat S. aureus infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.