The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.
Two monoclonal antibodies directed to the V antigen of Yersinia pestis have been tested for protective efficacy in a murine model of bubonic plague. Mice were infected with a current clinical isolate from Madagascar, designated Y.pestis 10-21/S. Mab7.3, delivered to mice intra-periteoneally at either 24h prior to, or 24h post- infection, was fully protective, building on many studies which have demonstrated the protective efficacy of this Mab against a number of different clinical isolates of Y.pestis. Mab 29.3, delivered intra-peritoneally at either -24h or +24h, protected 4/5 mice in either condition; this has demonstrated the protective efficacy of this Mab in vivo for the first time. These results add to the cumulative data about Mab7.3, which is currently being humanized and highlight its potential as a human immunotherapeutic for plague, which is an enduring endemic disease in Madagascar and other regions of Africa, Asia and South America.
Introduction: Standardization is important across the life cycle of medicinal products, supporting the diagnosis, treatment, and prevention of a wide range of diseases. For rare diseases, standardization is even more important, as patient groups are small, presenting significant challenges in the design, conduct, analysis, and interpretation of clinical studies. It is here that standardization institutions, including the UK's National Institute for Biological Standards and Control (NIBSC), can have a key role. Areas covered: A considerable proportion of NIBSC's work supports the better understanding, diagnosis, treatment, and prevention of rare diseases. NIBSC is also part of the UK's Medicines and Health care products Regulatory Agency (MHRA), creating an agency that is uniquely placed to combine scientific and regulatory expertize for the benefit of public health. This review provides an overview of NIBSC's work in rare diseases and highlights the positive impact of the work of standardization institutions in this field. Expert opinion: Standardization in product development is key for patients with rare diseases. The work of standardization institutions is increasingly being recognized as crucial for supporting scientific and clinical advancements, and early and collaborative interactions can provide drug developers with the necessary expertize, when standards matter most.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.