e Whole HIV-1 genome sequences are pivotal for large-scale studies of inter-and intrahost evolution, including the acquisition of drug resistance mutations. The ability to rapidly and cost-effectively generate large numbers of HIV-1 genome sequences from different populations and geographical locations and determine the effect of minority genetic variants is, however, a limiting factor. Next-generation sequencing promises to bridge this gap but is hindered by the lack of methods for the enrichment of virus genomes across the phylogenetic breadth of HIV-1 and methods for the robust assembly of the virus genomes from shortread data. Here we report a method for the amplification, next-generation sequencing, and unbiased de novo assembly of HIV-1 genomes of groups M, N, and O, as well as recombinants, that does not require prior knowledge of the sequence or subtype. A sensitivity of at least 3,000 copies/ml was determined by using plasma virus samples of known copy numbers. We applied our novel method to compare the genome diversities of HIV-1 groups, subtypes, and genes. The highest level of diversity was found in the env, nef, vpr, tat, and rev genes and parts of the gag gene. Furthermore, we used our method to investigate mutations associated with HIV-1 drug resistance in clinical samples at the level of the complete genome. Drug resistance mutations were detected as both major variant and minor species. In conclusion, we demonstrate the feasibility of our method for large-scale HIV-1 genome sequencing. This will enable the phylogenetic and phylodynamic resolution of the ongoing pandemic and efficient monitoring of complex HIV-1 drug resistance genotypes.
BackgroundThe rectum is particularly vulnerable to HIV transmission having only a single protective layer of columnar epithelium overlying tissue rich in activated lymphoid cells; thus, unprotected anal intercourse in both women and men carries a higher risk of infection than other sexual routes. In the absence of effective prophylactic vaccines, increasing attention is being given to the use of microbicides and preventative antiretroviral (ARV) drugs. To prevent mucosal transmission of HIV, a microbicide/ARV should ideally act locally at and near the virus portal of entry. As part of an integrated rectal microbicide development programme, we have evaluated rectal application of the nucleotide reverse transcriptase (RT) inhibitor tenofovir (PMPA, 9-[(R)-2-(phosphonomethoxy) propyl] adenine monohydrate), a drug licensed for therapeutic use, for protective efficacy against rectal challenge with simian immunodeficiency virus (SIV) in a well-established and standardised macaque model.Methods and FindingsA total of 20 purpose-bred Indian rhesus macaques were used to evaluate the protective efficacy of topical tenofovir. Nine animals received 1% tenofovir gel per rectum up to 2 h prior to virus challenge, four macaques received placebo gel, and four macaques remained untreated. In addition, three macaques were given tenofovir gel 2 h after virus challenge. Following intrarectal instillation of 20 median rectal infectious doses (MID50) of a noncloned, virulent stock of SIVmac251/32H, all animals were analysed for virus infection, by virus isolation from peripheral blood mononuclear cells (PBMC), quantitative proviral DNA load in PBMC, plasma viral RNA (vRNA) load by sensitive quantitative competitive (qc) RT-PCR, and presence of SIV-specific serum antibodies by ELISA. We report here a significant protective effect (p = 0.003; Fisher exact probability test) wherein eight of nine macaques given tenofovir per rectum up to 2 h prior to virus challenge were protected from infection (n = 6) or had modified virus outcomes (n = 2), while all untreated macaques and three of four macaques given placebo gel were infected, as were two of three animals receiving tenofovir gel after challenge. Moreover, analysis of lymphoid tissues post mortem failed to reveal sequestration of SIV in the protected animals. We found a strong positive association between the concentration of tenofovir in the plasma 15 min after rectal application of gel and the degree of protection in the six animals challenged with virus at this time point. Moreover, colorectal explants from non-SIV challenged tenofovir-treated macaques were resistant to infection ex vivo, whereas no inhibition was seen in explants from the small intestine. Tissue-specific inhibition of infection was associated with the intracellular detection of tenofovir. Intriguingly, in the absence of seroconversion, Gag-specific gamma interferon (IFN-γ)-secreting T cells were detected in the blood of four of seven protected animals tested, with frequencies ranging from 144 spot forming cells (SFC...
BackgroundThere have been no previous studies of the long-term survival and temporal changes in plasma viral load among HIV-2 infected subjects.Methods133 HIV-2 infected and 158 HIV-uninfected subjects from a rural area in North-west Guinea-Bissau, West Africa were enrolled into a prospective cohort study in 1991 and followed-up to mid-2009. Data were collected on four occasions during that period on HIV antibodies, CD4% and HIV-2 plasma viral load.ResultsMedian age (interquartile range [IQR]) of HIV-2 infected subjects at time of enrollment was 47 (36, 60) years, similar to that of HIV-uninfected control subjects, 49 (38, 62) (p = 0.4). Median (IQR) plasma viral load and CD4 percentage were 347 (50, 4,300) copies/ml and 29 (22, 35) respectively.Overall loss to follow-up to assess vital status was small, at 6.7% and 6.3% for HIV-2 infected and uninfected subjects respectively. An additional 17 (12.8%) and 16 (10.1%) of HIV-2 infected and uninfected subjects respectively were censored during follow-up due to infection with HIV-1. The mortality rate per 100 person-years (95% CI) was 4.5 (3.6, 5.8) among HIV-2 infected subjects compared to 2.1 (1.6, 2.9) among HIV-uninfected (age-sex adjusted rate ratio 1.9 (1.3, 2.8, p < 0.001) representing a 2-fold excess mortality rate associated with HIV-2 infection.Viral load measurements were available for 98%, 78%, 77% and 61% HIV-2 infected subjects who were alive and had not become super-infected with HIV-1, in 1991, 1996, 2003 and 2006 respectively. Median plasma viral load (RNA copies per ml) (IQR) did not change significantly over time, being 150 (50, 1,554; n = 77) in 1996, 203 (50, 2,837; n = 47) in 2003 and 171 (50, 497; n = 31) in 2006. Thirty seven percent of HIV-2 subjects had undetectable viraemia (<100 copies/ml) at baseline: strikingly, mortality in this group was similar to that of the general population.ConclusionsA substantial proportion of HIV-2 infected subjects in this cohort have stable plasma viral load, and those with an undetectable viral load (37%) at study entry had a normal survival rate. However, the sequential laboratory findings need to be interpreted with caution given the number of individuals who could not be re-examined.
Vaccination with live attenuated simian immunodeficiency virus (SIVmacC8) confers potent, reproducible protection against homologous wild-type virus challenge (SIVmacJ5). The ability of SIVmacC8 to confer resistance to superinfection with an uncloned ex vivo derivative of SIVmac251 (SIVmac32H/L28) was investigated. In naïve, Mauritian-derived cynomolgus macaques (Macaca fascicularis), SIVmac32H/L28 replicated to high peak titres (.10 8 SIV RNA copies ml), persisted at high levels and induced distinctive pathology in lymphoid tissues. In cynomolgus macaques vaccinated with SIVmacC8, no evidence of detectable superinfection was observed in 3/8 vaccinates following challenge 3 or 20 weeks later with SIVmac32H/L28. Analyses after SIVmac32H/L28 challenge revealed a significant reduction in viral RNA (P,0.001) and DNA levels between 20 week vaccinates and challenge controls. Amongst 3 week vaccinates, less potent protection was observed. However, analysis of env from breakthrough virus indicated .99 % sequence similarity with the vaccine virus. Highly sensitive PCR assays that distinguish vaccine and challenge virus stocks demonstrated restimulation of replication of the vaccine virus SIVmacC8 in the face of potent protection against a vigorous, homologous challenge virus. Vaccine-induced antiviral neutralizing antibodies and anti-Nef CD8 + cytotoxic T cell responses did not correlate with the outcome of the challenge. Defining the mechanism of vaccine protection will need to account for the effective control of a genetically closely related challenge virus whilst remaining unable to suppress replication of the pre-existing vaccine virus. The role of innate and intrinsic anti-retroviral immunity in the protection conferred by live attenuated SIV vaccines warrants careful study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.