Vaccination with live attenuated simian immunodeficiency virus (SIVmacC8) confers potent, reproducible protection against homologous wild-type virus challenge (SIVmacJ5). The ability of SIVmacC8 to confer resistance to superinfection with an uncloned ex vivo derivative of SIVmac251 (SIVmac32H/L28) was investigated. In naïve, Mauritian-derived cynomolgus macaques (Macaca fascicularis), SIVmac32H/L28 replicated to high peak titres (.10 8 SIV RNA copies ml), persisted at high levels and induced distinctive pathology in lymphoid tissues. In cynomolgus macaques vaccinated with SIVmacC8, no evidence of detectable superinfection was observed in 3/8 vaccinates following challenge 3 or 20 weeks later with SIVmac32H/L28. Analyses after SIVmac32H/L28 challenge revealed a significant reduction in viral RNA (P,0.001) and DNA levels between 20 week vaccinates and challenge controls. Amongst 3 week vaccinates, less potent protection was observed. However, analysis of env from breakthrough virus indicated .99 % sequence similarity with the vaccine virus. Highly sensitive PCR assays that distinguish vaccine and challenge virus stocks demonstrated restimulation of replication of the vaccine virus SIVmacC8 in the face of potent protection against a vigorous, homologous challenge virus. Vaccine-induced antiviral neutralizing antibodies and anti-Nef CD8 + cytotoxic T cell responses did not correlate with the outcome of the challenge. Defining the mechanism of vaccine protection will need to account for the effective control of a genetically closely related challenge virus whilst remaining unable to suppress replication of the pre-existing vaccine virus. The role of innate and intrinsic anti-retroviral immunity in the protection conferred by live attenuated SIV vaccines warrants careful study.
The neuropathology of simian immunodeficiency (SIV) infection in cynomolgus macaques (Macaca fascicularis) was investigated following infection with either T cell tropic SIVmacJ5, SIVmacC8 or macrophage tropic SIVmac17E-Fr. Formalin fixed, paraffin embedded brain tissue sections were analysed using a combination of in situ techniques. Macaques infected with either wild-type SIVmacJ5 or neurovirulent SIVmac17E-Fr showed evidence of neuronal dephosphorylation, loss of oligodendrocyte and CCR5 staining, lack of microglial MHC II expression, infiltration by CD4+ and CD8+ T cells and mild astrocytosis. SIVmacJ5-infected animals exhibited activation of microglia whilst those infected with SIVmac17E-Fr demonstrated a loss of microglia staining. These results are suggestive of impaired central nervous system (CNS) physiology. Furthermore, infiltration by T cells into the brain parenchyma indicated disruption of the blood brain barrier (BBB). Animals infected with the Δnef-attenuated SIVmacC8 showed microglial activation and astrogliosis indicative of an inflammatory response, lack of MHC II and CCR5 staining and infiltration by CD8+ T cells. These results demonstrate that the SIV infection of cynomolgus macaque can be used as a model to replicate the range of CNS pathologies observed following HIV infection of humans and to investigate the pathogenesis of HIV associated neuropathology.
Zika virus (ZIKV) causes neurological complications in susceptible individuals, highlighted in the recent South American epidemic. Natural ZIKV infection elicits host responses capable of preventing subsequent re-infection, raising expectations for effective vaccination. Defining protective immune correlates will inform viral intervention strategies, particularly vaccine development. Non-human primate (NHP) species are susceptible to ZIKV and represent models for vaccine development. The protective efficacy of a human anti-ZIKV convalescent plasma pool (16/320-14) developed as a candidate reference material for a WHO International Standard was evaluated in macaques. Convalescent plasma administered to four cynomolgus macaques (Macaca fascicularis) intra-peritoneally 24 hrs prior to sub-cutaneous challenge with 103 pfu ZIKVPRVABC59 protected against detectable infection, with absence of detectable ZIKV RNA in blood and lymphoid tissues. Passively immunised anti-ZIKV immunoglobulin administered prior to time of challenge remained present only at very low levels 42 days post-challenge. Absence of de novo antibody responses in passively immunised macaques indicate sterilising immunity compared with naïve challenge controls that exhibited active ZIKV-specific IgM and IgG responses post-challenge. Demonstration that the presence of convalescent anti-ZIKV at levels of 400 IU/mL neutralising antibody protects against virus challenge provides a scientific framework for development of anti-ZIKV vaccines and facilitates regulatory approval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.