After an initial response to chemotherapy, many patients with triple-negative breast cancer (TNBC) have recurrence of drug-resistant metastatic disease. Studies with TNBC cells suggest that chemotherapy-resistant populations of cancer stem-like cells (CSCs) with self-renewing and tumor-initiating capacities are responsible for these relapses. TGF-β has been shown to increase stem-like properties in human breast cancer cells. We analyzed RNA expression in matched pairs of primary breast cancer biopsies before and after chemotherapy. Biopsies after chemotherapy displayed increased RNA transcripts of genes associated with CSCs and TGF-β signaling. In TNBC cell lines and mouse xenografts, the chemotherapeutic drug paclitaxel increased autocrine TGF-β signaling and IL-8 expression and enriched for CSCs, as indicated by mammosphere formation and CSC markers. The TGF-β type I receptor kinase inhibitor LY2157299, a neutralizing TGF-β type II receptor antibody, and SMAD4 siRNA all blocked paclitaxel-induced IL8 transcription and CSC expansion. Moreover, treatment of TNBC xenografts with LY2157299 prevented reestablishment of tumors after paclitaxel treatment. These data suggest that chemotherapy-induced TGF-β signaling enhances tumor recurrence through IL-8-dependent expansion of CSCs and that TGF-β pathway inhibitors prevent the development of drug-resistant CSCs. These findings support testing a combination of TGF-β inhibitors and anticancer chemotherapy in patients with TNBC.
Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ~30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy.
Acquired resistance to CDK4/6 small molecule inhibitors in breast cancer arises through mechanisms that are yet uncharacterized. In this study, we used a kinome-wide siRNA screen to identify kinases which when downregulated yields sensitivity to the CDK4/6 inhibitor ribociclib. In this manner, we identified PDK1 as a key modifier of ribociclib sensitivity in estrogen receptor-positive MCF-7 breast cancer cells. Pharmacological inhibition of PDK1 with GSK2334470 in combination with ribociclib or palbociclib, another CDK4/6 inhibitor, synergistically inhibited proliferation and increased apoptosis in a panel of ER+ breast cancer cell lines. Ribociclib-resistant breast cancer cells selected by chronic drug exposure displayed a relative increase levels of PDK1 and activation of the AKT pathway. Analysis of these cells revealed that CDK4/6 inhibition failed to induce cell cycle arrest or senescence. Mechanistic investigations showed that resistant cells coordinately upregulated expression of cyclins A, E and D1, activated phospho-CDK2 and phospho-S477/T479 AKT. Treatment with GSK2334470 or the CDK2 inhibitor dinaciclib was sufficient to reverse these events and restore the sensitivity of ribociclib-resistant cells to CDK4/6 inhibitors. Ribociclib in combination with GSK2334470 or the PI3Kα inhibitor alpelisib decreased xenograft tumor growth more potently than each drug alone. Taken together, our results highlight a role for the PI3K-PDK1 signaling pathway in mediating acquired resistance to CDK4/6 inhibitors.
G protein-coupled receptors (GPCR) and the epidermal growth factor receptor (EGFR) are often both overexpressed and contribute to the growth of cancers by activating autocrine pathways. GPCR ligands have been reported to trigger EGFR signaling via receptor cross-talk in cancer cells. Here, we show that GPCR ligands prostaglandin E2 (PGE2) and bradykinin (BK) activate EGFR signaling. Inhibition of EGFR using several strategies, including small-molecule inhibitors and an EGFR-specific antibody, resulted in partial attenuation of signaling downstream of EGFR. PGE2 and BK triggered EGFR signaling by increasing selective autocrine release of transforming growth factor-A (TGF-A). Inhibition of tumor necrosis factor-A-converting enzyme abrogated BK-or PGE2-mediated activation of EGFR signaling. Both PGE2 and BK stimulated head and neck squamous cell carcinoma (HNSCC) invasion via EGFR. Treatment of HNSCC cells with the BK antagonist CU201 resulted in growth inhibition. The combination of CU201 with the EGFR small-molecule inhibitor erlotinib resulted in additive inhibitory effects on HNSCC cell growth in vitro. Inhibition of the PGE2 synthesis pathway with sulindac induced HNSCC cytotoxicity at high doses (EC 50 , 620 Mmol/L). However, combined inhibition of both EGFR with the tyrosine kinase inhibitor erlotinib and GPCR with sulindac at low doses of 6 and 310 Mmol/L, respectively, resulted in synergistic killing of HNSCC tumor cells. Combined blockade of both EGFR and GPCRs may be a rational strategy to treat cancers, including HNSCC that shows cross-talk between GPCR and EGFR signaling pathways.
Basal-like breast cancer (BLBC) is an aggressive disease that lacks a clinically-approved targeting therapy. Traditional chemotherapy is effective in BLBC, but it spares the cancer stem cell (CSC)-like population which is likely to contribute to cancer recurrence after the initial treatment. DUSP4 is a negative regulator of the MAPK pathway that is deficient in highly aggressive BLBCs treated with chemotherapy, leading to aberrant MAPK activation and resistance to taxane-induced apoptosis. Herein, we investigated how DUSP4 regulates the MEK and JNK pathways in modifying CSC-like behavior. DUSP4 loss increased mammosphere formation and the expression of the CSC-promoting cytokines IL-6 and IL-8. These effects were caused in part by loss of control of the MEK and JNK pathways and involved downstream activation of the ETS-1 and c-JUN transcription factors. Enforced expression of DUSP4 in reduced the CD44+/CD24- population in multiple BLBC cell lines in a MEK-dependent manner, limiting tumor formation of claudin-low SUM159PT cells in mice. Our findings support the evaluation of MEK and JNK pathway inhibitors as therapeutic agents in BLBC in order to eliminate the CSC population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.