A defined medium was capable of supporting the growth of a psychrophilic coccus over its growth temperature range,-4 to 25 C. A rapid loss of viability occurred when exponential cells were transferred to growth-restricting temperatures above 25 C. Comparative studies of the chemistry of exponential-phase cells and cells exposed to supermaximum temperature indicated that this loss of viability is not due to temperature-induced membrane damage, inhibition of respiration or energy metabolism, or depletion of intracellular reserves. Moribund and dead cell populations showed an elevated level of intracellular adenosine-5'-triphosphate and amino acids-a finding reflected in the reduced rate of amino acid synthesis during the recovery of heat-shocked cells-and also leakage of degraded ribonucleic acid products into the medium. Incorporation studies indicated that loss of viability at 30 C was correlated with inhibition of protein synthesis, followed later by inhibition of ribonucleic acid synthesis. Deoxyribonucleic acid synthesis was unaffected by temperature above the maximum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.