The coronal and sagittal plane leg movements of 24 experienced male cyclists were assessed using video analysis while cycling on a Kingcycle windload simulator. The cyclists were grouped into those with a history of injury and an asymptomatic group on the basis of self-reported injury status. The ages, cycling experience, competition distances and competition speeds of the two groups were compared using Student's t-test. No significant differences (P < 0.05) were found for any of these variables. The maximum and minimum shank adduction, shank adduction velocities, knee flexion and ankle dorsiflexion values were also compared using Student's t-test. Significant differences were found at the point of maximum adduction (1.9 degrees; P = 0.019) and minimum dorsiflexion (4.9 degrees; P = 0.014). These differences indicated more dorsiflexion and greater abduction on the part of the symptomatic cyclists, supporting previous research that found that cyclists with a history of injury differ from those without a history of injury in the coronal plane leg movement patterns they adopt. Also, the most extreme medial position of the knee relative to the ankle occurred during knee extension. This supports the potential injury mechanism proposed by Francis (1986), which had previously only been examined using coronal plane kinematics.
Intense training is the most clinically successful treatment modality following incomplete spinal cord injuries (SCIs). With the advent of plasticity enhancing treatments, understanding how treatments might interact when delivered in combination becomes critical. Here, we investigated a rational approach to sequentially combine treadmill locomotor training with antibody mediated suppression of the fiber growth inhibitory protein Nogo-A. Following a large but incomplete thoracic lesion, rats were immediately treated with either anti-Nogo-A or control antibody (2weeks) and then either left untrained or step-trained starting 3weeks after injury for 8weeks. It was found that sequentially combined therapy improved step consistency and reduced toe dragging and climbing errors, as seen with training and anti-Nogo-A individually. Animals with sequential therapy also adopted a more parallel paw position during bipedal walking and showed greater overall quadrupedal locomotor recovery than individual treatments. Histologically, sequential therapy induced the greatest corticospinal tract sprouting caudally into the lumbar region and increased the number of serotonergic synapses onto lumbar motoneurons. Increased primary afferent sprouting and synapse formation onto lumbar motoneurons observed with anti-Nogo-A antibody were reduced by training. Animals with sequential therapy also showed the highest reduction of lumbar interneuronal activity associated with walking (c-fos expression). No treatment effects for thermal nociception, mechanical allodynia, or lesion volume were observed. The results demonstrate that sequential administration of anti-Nogo-A antibody followed in time with intensive locomotor training leads to superior recovery of lost locomotor functions, which is probably mediated by changes in the interaction between descending sprouting and local segmental networks after SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.