Chemically activated graphene ('activated microwave expanded graphite oxide', a-MEGO) was used as a cathode material for Li-ion hybrid supercapacitors. The performance of a-MEGO was first verified with Li-ion electrolyte in a symmetrical supercapacitor cell. Hybrid supercapacitors were then constructed with a-MEGO as the cathode and with either graphite or Li(4)Ti(5)O(12) (LTO) for the anode materials. The results show that the activated graphene material works well in a symmetrical cell with the Li-ion electrolyte with specific capacitances as high as 182 F g(-1). In a full a-MEGO/graphite hybrid cell, specific capacitances as high as 266 F g(-1) for the active materials at operating potentials of 4 V yielded gravimetric energy densities for a packaged cell of 53.2 W h kg(-1).
Diesel-powered, human-driven buses currently dominate public transit options in most U.S. cities, yet they produce health, environmental, and cost concerns. Emerging technologies may improve fleet operations by cost-effectively reducing emissions. This study analyzes both battery-electric buses and self-driving (autonomous) buses from both cost and qualitative perspectives, using the Capital Metropolitan Transportation Authority’s bus fleet in Austin, Texas. The study predicts battery-electric buses, including the required charging infrastructure, will become lifecycle cost-competitive in or before the year 2030 at existing U.S. fuel prices ($2.00/gallon), with the specific year depending on the actual rate of cost decline and the diesel bus purchase prices. Rising diesel prices would result in immediate cost savings before reaching $3.30 per gallon. Self-driving buses will reduce or eliminate the need for human drivers, one of the highest current operating costs of transit agencies. Finally, this study develops adoption schedules for these technologies. Recognizing bus lifespans and driver contracts, and assuming battery-electric bus adoption beginning in year-2020, cumulative break-even (neglecting extrinsic benefits, such as respiratory health) occurs somewhere between 2030 and 2037 depending on the rate of battery cost decline and diesel-bus purchase prices. This range changes to 2028 if self-driving technology is available for simultaneous adoption on new electric bus purchases beginning in 2020. The results inform fleet operators and manufacturers of the budgetary implications of converting a bus fleet to electric power, and what cost parameters allow electric buses to provide budgetary benefits over their diesel counterparts.
The effects of compressive force and the addition of conductive fillers on ultracapacitor electrode performance measurements were studied. We have shown that the force exerted by typical battery coin cell components is inadequate, resulting in erroneous measurements of electrode performance. We further demonstrated that with modest modifications, coin cell measurements can equal those of specialized test fixtures and of packaged cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.