urum wheat (DW), Triticum turgidum L. ssp. durum (Desf.) Husn., genome BBAA, is a cereal grain mainly used for pasta production and evolved from domesticated emmer wheat (DEW), T. turgidum ssp. dicoccum (Schrank ex Schübl.) Thell. DEW itself derived from wild emmer wheat (WEW), T. turgidum ssp. dicoccoides (Körn. ex Asch. & Graebn.
NaCl stress is a major abiotic stress limiting the productivity and the geographical distribution of many plant species. Roots are the primary site of salinity perception. To understand better NaCl stress responses in Arabidopsis roots, a comparative proteomic analysis of roots that had been exposed to 150 mM NaCl for either 6 h or 48 h was conducted. Changes in the abundance of protein species within roots were examined using two-dimensional electrophoresis. Among the >1000 protein spots reproducibly detected on each gel, the abundance of 112 protein spots decreased and 103 increased, at one or both time points, in response to NaCl treatment. Through liquid-chromatography-tandem mass spectrometry, identity was assigned to 86 of the differentially abundant spots. The proteins identified included many previously characterized stress-responsive proteins and others related to processes including scavenging for reactive oxygen species; signal transduction; translation, cell wall biosynthesis, protein translation, processing and degradation; and metabolism of energy, amino acids, and hormones. At the resolution of individual genes and proteins, poor statistical correlation (6 h, r= -0.13; 48 h, r=0.11) of these protein expression data with previous microarray results was detected, supporting the concept that post-transcriptional regulation plays an important role in stress-responsive gene expression, and highlighting the need for combined transcriptomic and proteomic analyses.
Cadmium accumulation in grain of durum wheat (Triticum turgidum L. var. durum) represents a concern to consumers. In an effort to understand the regulation of Cd accumulation in maturing grain, the remobilization of 109Cd applied to stem and flag leaves was examined in two near-isogenic lines that differ in grain Cd accumulation. Absorbed 109Cd was primarily retained in the labelling flap (50-54% and 65-80% for stem and flag leaves, respectively). Cadmium exported from the stem flap initially (3 d) accumulated in the stem in a declining gradient towards the head. Subsequent remobilization of Cd deposited in the stem was associated with Cd accumulation in the grain. Cadmium exported from the flag leaf flap was primarily directed to the grain. Little (<1%) Cd accumulated in the glumes or rachis, and transport of Cd to shoot tissues below the flag leaf node was low (<1%). On average, 9% and 17% of absorbed 109Cd accumulated in the grain 14 d after labelling the stem and flag leaf, respectively. Irrespective of labelling position, the low Cd-accumulating isoline averaged 1.5-2-fold lower Cd accumulation per grain and Cd concentration in the grain than the high Cd-accumulating isoline. Cadmium accumulation in the grain was inversely correlated with Cd retention in the stem (stem labelled) and labelling flap (flag leaf labelled) for both isolines. Cadmium translocation to the grain was not inhibited by Zn when both were applied simultaneously (50 pM 109Cd; 0.5 microM 65Zn) to the flag leaf. These results show that elevated remobilization of Cd from the leaves and stem to the maturing grain may be partially responsible for the high accumulation of Cd in durum wheat grain.
Some durum wheat (Triticum turgidum L. var durum) cultivars have the genetic propensity to accumulate cadmium (Cd) in the grain. A major gene controlling grain Cd concentration designated as Cdu1 has been reported on 5B, but the genetic factor(s) conferring the low Cd phenotype are currently unknown. The objectives of this study were to saturate the chromosomal region harboring Cdu1 with newly developed PCR-based markers and to investigate the colinearity of this wheat chromosomal region with rice (Oryza sativa L.) and Brachypodium distachyon genomes. Genetic mapping of markers linked to Cdu1 in a population of recombinant inbred substitution lines revealed that the gene(s) associated with variation in Cd concentration resides in wheat bin 5BL9 between fraction breakpoints 0.76 and 0.79. Genetic mapping and quantitative trait locus (QTL) analysis of grain Cd concentration was performed in 155 doubled haploid lines from the cross W9262-260D3 (low Cd) by Kofa (high Cd) revealed two expressed sequence tag markers (ESMs) and one sequence tagged site (STS) marker that co-segregated with Cdu1 and explained >80% of the phenotypic variation in grain Cd concentration. A second, minor QTL for grain Cd concentration was also identified on 5B, 67 cM proximal to Cdu1. The Cdu1 interval spans 286 kbp of rice chromosome 3 and 282 kbp of Brachypodium chromosome 1. The markers and rice and Brachypodium colinearity described here represent tools that will assist in the positional cloning of Cdu1 and can be used to select for low Cd accumulation in durum wheat breeding programs targeting this trait. The isolation of Cdu1 will further our knowledge of Cd accumulation in cereals as well as metal accumulation in general.
BackgroundConcentrations of cadmium (Cd) in the grain of many durum wheats (Triticum turgidum subsp. durum) grown in North American prairie soils often exceed international trade standards. Genotypic differences in root-to-shoot translocation of Cd are a major determinant of intraspecific variation in the accumulation of Cd in grain. We tested the extent to which changes in whole-plant Cd accumulation and the distribution of Cd between tissues influences Cd accumulation in grain by measuring Cd accumulation throughout the grain filling period in two near-isogenic lines (NILs) of durum wheat that differ in grain Cd accumulation.ResultsRoots absorbed Cd and transported it to the shoots throughout the grain filling period, but the low- and high-Cd NILs did not differ in whole-plant Cd uptake. Although the majority of Cd accumulation was retained in the roots, the low- and high-Cd NILs differed substantively in root-to-shoot translocation of Cd. At grain maturity, accumulation of Cd in the shoots was 13% (low-Cd NIL) or 37% (high-Cd NIL) of whole-plant Cd accumulation. Accumulation of Cd in all shoot tissue, including grain, was at least 2-fold greater in the high-Cd NIL at all harvests. There was no net remobilization of shoot Cd pools during grain filling. The timing of Cd accumulation in grain was positively correlated with grain biomass accumulation, and the rate of grain filling peaked between 14 and 28 days post-anthesis, when both NILs accumulated 60% of total grain biomass and 61-66% of total grain Cd content.ConclusionsThese results show that genotypic variation in root-to-shoot translocation of Cd controls accumulation of Cd in durum wheat grain. Continued uptake of Cd by roots and the absence of net remobilization of Cd from leaves during grain filling support a direct pathway of Cd transport from roots to grain via xylem-to-phloem transfer in the stem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.