This paper presents a method for rapid detection of faults on VSC multi-terminal HVDC transmission networks using multi-point optical current sensing. The proposed method uses differential protection as a guiding principle, and is implemented using current measurements obtained from optical current sensors distributed along the transmission line. Performance is assessed through detailed transient simulation using Matlab/Simulink R models, integrating inductive DC-line terminations, detailed DC circuit breaker models and a network of fiber-optic current sensors. Moreover, the feasibility and required performance of optical-based measurements is validated through laboratory testing. Simulation results demonstrate that the proposed protection algorithm can effectively, and within very short period of time, discriminate between faults on the protected line (internal faults), and those occurring on adjacent lines or busbars (external faults). Hardware tests prove that the scheme can be achieved with the existing, available sensing technology.
This review offers new perspectives on the subject and highlights an area in need of further research. It includes an analysis of current scientific literature mainly covering the last decade and examines the trends in the development of electronic, acoustic and optical-fiber humidity sensors over this period. The major findings indicate that a new generation of sensor technology based on optical fibers is emerging. The current trends suggest that electronic humidity sensors could soon be replaced by sensors that are based on photonic structures. Recent scientific advances are expected to allow dedicated systems to avoid the relatively high price of interrogation modules that is currently a major disadvantage of fiber-based sensors.
We have analyzed the various noise processes occurring in photon infrared detectors operating at room temperature and show that background-limited performance for photon detectors is potentially achievable at room temperature over the 3–13 μm band even in restricted fields of view. We discuss practical embodiments in which this might be realized and give quantitative estimates of the material properties required to achieve this performance. A critical feature to achieve the highest performance is that devices within an array should not be radiatively coupled to each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.