Biofilms are typically studied in bacterial media that allow the study of important properties such as bacterial growth. However, the results obtained in such media cannot take into account the bacterial localization/clustering caused by bacteria–protein interactions in vivo and the accompanying alterations in phenotype, virulence factor production, and ultimately antibiotic tolerance. We and others have reported that methicillin-resistant or methicillin-susceptible Staphylococcus aureus (MRSA or MSSA, respectively) and other pathogens assemble a proteinaceous matrix in synovial fluid. This proteinaceous bacterial aggregate is coated by a polysaccharide matrix as is characteristic of biofilms. In this study, we identify proteins important for this aggregation and determine the concentration ranges of these proteins that can reproduce bacterial aggregation. We then test this protein combination for its ability to cause marked aggregation, antibacterial tolerance, preservation of morphology, and expression of the phenol-soluble modulin (PSM) virulence factors. In the process, we create a viscous fluid that models bacterial behavior in synovial fluid. We suggest that our findings and, by extension, use of this fluid can help to better model bacterial behavior of new antimicrobial therapies, as well as serve as a starting point to study host protein–bacteria interactions characteristic of physiological fluids.
The National Health and Nutrition Examination Survey (NHANES) provides data on the health and environmental exposure of the non-institutionalized US population. Such data have considerable potential to understand how the environment and behaviors impact human health. These data are also currently leveraged to answer public health questions such as prevalence of disease. However, these data need to first be processed before new insights can be derived through large-scale analyses. NHANES data are stored across hundreds of files with multiple inconsistencies. Correcting such inconsistencies takes systematic cross examination and considerable efforts but is required for accurately and reproducibly characterizing the associations between the exposome and diseases. Thus, we developed a set of curated and unified datasets and accompanied code by merging 614 separate files and harmonizing unrestricted data across NHANES III (1988-1994) and Continuous (1999-2018), totaling 134,310 participants and 4,740 variables. The variables convey 1) demographic information, 2) dietary consumption, 3) physical examination results, 4) occupation, 5) questionnaire items (e.g., physical activity, general health status, medical conditions), 6) medications, 7) mortality status linked from the National Death Index, 8) survey weights, 9) environmental exposure biomarker measurements, and 10) chemical comments that indicate which measurements are below or above the lower limit of detection. We also provide a data dictionary listing the variables and their descriptions to help researchers browse the data. We also provide R markdown files to show example codes on calculating summary statistics and running regression models to help accelerate high-throughput analysis and secular trends of the exposome.
Treatment failure in joint infections is associated with fibrinous, antibiotic-resistant, floating and tissue-associated Staphylococcus aureus aggregates formed in synovial fluid (SynF). We explore whether antibiotic activity could be increased against Staphylococcus aureus aggregates using ultrasound-triggered microbubble destruction (UTMD), in vitro and in a porcine model of septic arthritis. In vitro, when bacterially laden SynF is diluted, akin to the dilution achieved clinically with lavage and local injection of antibiotics, amikacin and ultrasound application result in increased bacterial metabolism, aggregate permeabilization, and a 4-5 log decrease in colony forming units, independent of microbubble destruction. Without SynF dilution, amikacin + UTMD does not increase antibiotic activity. Importantly, in the porcine model of septic arthritis, no bacteria are recovered from the SynF after treatment with amikacin and UTMD—ultrasound without UTMD is insufficient. Our data suggest that UTMD + antibiotics may serve as an important adjunct for the treatment of septic arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.