Treatment failure in joint infections is associated with fibrinous, antibiotic-resistant, floating and tissue-associated Staphylococcus aureus aggregates formed in synovial fluid (SynF). We explore whether antibiotic activity could be increased against Staphylococcus aureus aggregates using ultrasound-triggered microbubble destruction (UTMD), in vitro and in a porcine model of septic arthritis. In vitro, when bacterially laden SynF is diluted, akin to the dilution achieved clinically with lavage and local injection of antibiotics, amikacin and ultrasound application result in increased bacterial metabolism, aggregate permeabilization, and a 4-5 log decrease in colony forming units, independent of microbubble destruction. Without SynF dilution, amikacin + UTMD does not increase antibiotic activity. Importantly, in the porcine model of septic arthritis, no bacteria are recovered from the SynF after treatment with amikacin and UTMD—ultrasound without UTMD is insufficient. Our data suggest that UTMD + antibiotics may serve as an important adjunct for the treatment of septic arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.