Made available through Montana State University's ScholarWorks 2543 DECEMBER 2017 AMERICAN METEOROLOGICAL SOCIETY | THE RISING RISK OF DROUGHT. Droughts of the twenty-first century are characterized by hotter temperatures, longer duration, and greater spatial extent, and are increasingly exacerbated by human demands for water. This situation increases the vulnerability of ecosystems to drought, including a rise in drought-driven tree mortality globally (Allen et al. 2015) and anticipated ecosystem transformations from one state to another-for example, forest to a shrubland (Jiang et al. 2013). When a drought drives changes within ecosystems, there can be a ripple effect through human communities that depend on those ecosystems for critical goods and services (Millar and Stephenson 2015). For example, the "Millennium Drought" in Australia caused unanticipated losses to key services provided by hydrological ecosystems in the Murray-Darling basin-including air quality regulation, waste treatment, erosion prevention, and recreation. The costs of these losses exceeded AUD $800 million, as resources were spent to replace these services and adapt to new drought-impacted ecosystems (Banerjee et al. 2013). Despite the high costs to both nature and people, current drought research, management, and policy perspectives often fail to evaluate how drought affects ecosystems and the "natural capital" they provide to human communities. Integrating these human and natural dimensions of drought is an essential step toward addressing the rising risk of drought in the twenty-first century.Part of the problem is that existing drought definitions describing meteorological drought impacts (agricultural, hydrological, and socioeconomic) view drought through a human-centric lens and do not fully address the ecological dimensions of drought.
Incorporation of concepts from landscape ecology into understanding and managing riverine ecosystems has become widely known as riverscape ecology. Riverscape ecology emphasizes interactions among processes at different scales and their consequences for valued ecosystem components, such as riverine fishes. Past studies have focused strongly on understanding the ecological processes in riverscapes and how human actions modify those processes. It is increasingly clear, however, that an understanding of the drivers behind actions that lead to human modification also merit consideration, especially regarding how those drivers influence management efficacy. These indirect drivers of riverscape outcomes can be understood in the context of a diverse array of social processes, which we collectively refer to as human dimensions. Like ecological phenomena, social processes also exhibit complex interactions across spatiotemporal scales. Greater emphasis on feedbacks between social and ecological processes will lead scientists and managers to more completely understand riverscapes as complex, dynamic, interacting social–ecological systems. Emerging applications in riverscapes, as well as studies of other ecosystems, provide examples that can lead to stronger integration of social and ecological science. We argue that conservation successes within riverscapes may not come from better ecological science, improved ecosystem service analyses, or even economic incentives if the fundamental drivers of human behaviors are not understood and addressed in conservation planning and implementation. This article is categorized under: Water and Life > Stresses and Pressures on Ecosystems Human Water > Water Governance Engineering Water > Planning Water
As research recognizes the importance of ecological impacts of drought to natural and human communities, drought planning processes need to better incorporate ecological impacts. Drought planning currently recognizes the vulnerability of some ecological impacts from drought (e.g., loss of instream flow affecting fish populations). However, planning often does not identify all the ecological aspects in a landscape that stakeholders value, nor does it examine the extent to which those aspects are vulnerable to drought. One approach for identifying ecological aspects is ecosystem services (ES)-that is, the benefits humans receive from nature. To incorporate ecological impacts into drought planning in the Upper Missouri Headwaters (UMH) region (Montana, USA), we combined ES elicitation using the Common International Classification of Ecosystem Services and a vulnerability assessment using semi-structured interviews. We juxtaposed results from the interviews and the ES elicitation to assess which ES might be vulnerable to drought and which impacts from interviews were associated with losses of ES. While both methods suggested common drought vulnerabilities, each method also suggested drought vulnerabilities not reported using the other method. The ES elicitation produced more detail about services present in the UMH ecosystem today while interviews resulted in more discussion about ecological transformation from future droughts. Results suggest that some combination of open-ended vulnerability assessment methods and ES elicitation using a structured framework can result in greater understanding of ecological drought vulnerability in a given region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.