Following the first description of living marine stromatolites along the South African east coast, new investigations along the south coast have revealed the occurrence of extensive fields of actively calcifying stromatolites. These stromatolites have been recorded at regular distances along a 200-km stretch of coastline, from Cape Recife in the east to the Storms River mouth in the west, with the highest density found between Schoenmakerskop and the Maitland River mouth. All active stromatolites are associated with freshwater seepage streams flowing from the dune cordon, which form rimstone dams and other accretions capable of retaining water in the supratidal platform. Resulting pools can reach a maximum depth of about 1 m and constitute a unique ecosystem in which freshwater and marine organisms alternate their dominance in response to vertical mixing and the balance between freshwater versus marine inflow. Although the factors controlling stromatolite growth are yet to be determined, nitrogen appears to be supplied mainly via the dune seeps. The epibenthic algal community within stromatolite pools is generally co-dominated by cyanobacteria and chlorophytes, with minimal diatom contribution.
Aim To review existing literature on the ability of waterbirds to spread aquatic alien and invasive species, and to assess the relevance of bird-mediated dispersal for the conservation of freshwater ecosystems.Location Global. Methods Literature Review.Results A systematic review of the literature revealed that quantitative studies investigating dispersal of alien organisms by waterbirds are rare (n = 14). Most studies citing waterbird dispersal rely on anecdotes or inferences from morphological dispersal syndromes. However, evidence from each stage of dispersal (i.e. emigration, transport and immigration) shows that waterbirds can carry alien plants and invertebrates internally and externally; transport them between water bodies at a variety of spatial scales; and deposit viable propagules in sites suited to aquatic invasive species.Main conclusions Our review suggests that waterbirds can and do act as important dispersal vectors for freshwater invasive species. Further experimental and field based research on the numbers and viability of moved alien propagules, and the roles of different species in the bird community, is needed. Furthermore, consideration of the spatially explicit manner in which birds move is imperative to understanding invasive spread. Populations of alien aquatic species in seemingly isolated wetlands can no longer be considered contained if they are able to be spread through waterbird-mediated dispersal, and containment measures must recognize such opportunities for further spread. Changing waterbird movement patterns, driven by climate and land use change, further add to the challenge of managing invasive species and offers an interesting opportunity for future research. The study of waterbird-mediated dispersal of aquatic alien invasive species provides insights not only into species invasions, but more generally into movement ecology, population ecology and biogeography.
amalgamates the top-down and bottom-up approaches to BE management. Achieving the goal of successful blue growth in Africa is now even more challenged by the implications of COVID-19 on the BE sectors. Reimagining and rebuilding a resilient BE in Africa post-coronavirus will require a strong political commitment to promoting a balance between economic, social and environmental benefits in line with the African Union's Agenda 2063 and the United Nations' Sustainable Development Goals.
Background Tarebia granifera (Lamarck, 1822) is originally from South-East Asia, but has been introduced and become invasive in many tropical and subtropical parts of the world. In South Africa, T. granifera is rapidly invading an increasing number of coastal lakes and estuaries, often reaching very high population densities and dominating shallow water benthic invertebrate assemblages. An assessment of the feeding dynamics of T. granifera has raised questions about potential ecological impacts, specifically in terms of its dietary overlap with native gastropods.Methodology/Principal FindingsA stable isotope mixing model was used together with gut content analysis to estimate the diet of T. granifera and native gastropod populations in three different coastal lakes. Population density, available biomass of food and salinity were measured along transects placed over T. granifera patches. An index of isotopic (stable isotopes) dietary overlap (IDO, %) aided in interpreting interactions between gastropods. The diet of T. granifera was variable, including contributions from microphytobenthos, filamentous algae (Cladophora sp.), detritus and sedimentary organic matter. IDO was significant (>60%) between T. granifera and each of the following gastropods: Haminoea natalensis (Krauss, 1848), Bulinus natalensis (Küster, 1841) and Melanoides tuberculata (Müller, 1774). However, food did not appear to be limiting. Salinity influenced gastropod spatial overlap. Tarebia granifera may only displace native gastropods, such as Assiminea cf. ovata (Krauss, 1848), under salinity conditions below 20. Ecosystem-level impacts are also discussed.Conclusion/SignificanceThe generalist diet of T. granifera may certainly contribute to its successful establishment. However, although competition for resources may take place under certain salinity conditions and if food is limiting, there appear to be other mechanisms at work, through which T. granifera displaces native gastropods. Complementary stable isotope and gut content analysis can provide helpful ecological insights, contributing to monitoring efforts and guiding further invasive species research.
Invasive aquatic species, such as the gastropod Tarebia granifera, can cause ecological disturbances and potentially reduce biodiversity by displacing indigenous invertebrates. In South Africa, T. granifera was first recorded in an estuarine environment in the St Lucia Estuary. Its tolerance to salinity and temperature was investigated through the experimental manipulation of these factors. T. granifera can tolerate temperatures between 0 ºC and 47.5 ºC, allowing it to survive high temperature extremes. The species may also survive cold snaps and invade higher altitude areas. More remarkably, this snail survives high salinity for a relatively long time, as LS 50 (lethal salinity for 50% of the population) was reached at 30 psu over 65-75 days. However, higher salinity adversely affected the T. granifera population. Snails acclimated to freshwater conditions and suddenly transferred to 30 psu experienced 100% mortality within 48 h. Snail activity also declined with increasing salinity. T. granifera's environmental tolerance and parthenogenetic characteristics are the keys to successful introduction and establishment. Therefore, the management of T. granifera may prove difficult in the short to medium term. The present findings constitute a contribution to the knowledge of biological invasions in Africa and to the understanding of estuarine invasions by T. granifera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.