Astrocytes exert multiple functions in the brain such as the development of blood-brain barrier characteristics, the promotion of neurovascular coupling, attraction of cells through the release of chemokines, clearance of toxic substances and generation of antioxidant molecules and growth factors. In this aspect, astrocytes secrete several growth factors (BDNF, GDNF, NGF, and others) that are fundamental for cell viability, oxidant protection, genetic expression and modulation of metabolic functions. The platelet derived growth factor (PDGF), which is expressed by many SNC cells, including astrocytes, is an important molecule that has shown neuroprotective potential, improvement of wound healing, regulation of calcium metabolism and mitochondrial function. Here we explore some of these astrocyte-driven functions of growth factors and their possible therapeutic uses in the context of neurodegeneration.
Platelet-derived growth factor, subtype BB (PDGF-BB) is a mitogenic growth factor produced in different cell types such as platelets, fibroblasts, neurons, and astrocytes. Previous reports have shown that different PDGF isoforms exert a neuroprotective effect in neurons and astrocytes against multiple degenerative insults. Previously, we showed that pretreatment with PDGF-BB for 24 h increased cell viability, preserved nuclear morphology and mitochondrial membrane potential following stimulation with rotenone, and reduced free radical production nearly to control conditions. In the present study, we explored the potential mechanisms associated with PDGF-BB protection against oxidative damage. Our results showed that PDGF-BB protected astrocytic cells through multiple responses, including decrease in the expression of cytoskeleton proteins, attenuated free radicals (reactive oxygen species (ROS)) production, preservation of mitochondrial ultrastructure, and improved expression of neuroglobin (Ngb1). In summary, these findings point out that PDGF-BB protects astrocytic cells by a reduction in ROS production and activation of antioxidant mechanisms.
Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.
Astrocytes are important for normal brain functioning. Astrocytes are metabolic regulators of the brain that exert many functions such as the preservation of blood-brain barrier (BBB) function, clearance of toxic substances, and generation of antioxidant molecules and growth factors. These functions are fundamental to sustain the function and survival of neurons and other brain cells. For these reasons, the protection of astrocytes has become relevant for the prevention of neuronal death during brain pathologies such as Parkinson's disease, Alzheimer's disease, stroke, and other neurodegenerative conditions. Currently, different strategies are being used to protect the main astrocytic functions during neurological diseases, including the use of growth factors, steroid derivatives, mesenchymal stem cell paracrine factors, nicotine derivatives, and computational biology tools. Moreover, the combined use of experimental approaches with bioinformatics tools such as the ones obtained through system biology has allowed a broader knowledge in astrocytic protection both in normal and pathological conditions. In the present review, we highlight some of these recent paradigms in assessing astrocyte protection using experimental and computational approaches and discuss how they could be used for the study of restorative therapies for the brain in pathological conditions.
Background Echinocandin resistance represents a great concern, as these drugs are recommended as first-line therapy for invasive candidiasis. Echinocandin resistance is conferred by mutations in FKS genes. Nevertheless, pathways are crucial for enabling tolerance, evolution, and maintenance of resistance. Therefore, understanding the biological processes and proteins involved in the response to caspofungin may provide clues indicating new therapeutic targets. Objectives We determined the resistance mechanism and assessed the proteome response to caspofungin exposure. We then evaluated the phenotypic impact of calcineurin inhibition by FK506 and cephalosporine A (CsA) on caspofungin-resistant Candida glabrata isolates. Methods Twenty-five genes associated with caspofungin resistance were analysed by NGS, followed by studies of the quantitative proteomic response to caspofungin exposure. Then, susceptibility testing of caspofungin in presence of FK506 and CsA was performed. The effects of calcineurin inhibitor/caspofungin combinations on heat stress (40°C), oxidative stress (0.2 and 0.4 mM menadione) and on biofilm formation (polyurethane catheter) were analysed. Finally, a Galleria mellonella model using blastospores (1 × 109 cfu/mL) was developed to evaluate the impact of the combinations on larval survival. Results F659-del was found in the FKS2 gene of resistant strains. Proteomics data showed some up-regulated proteins are involved in cell-wall biosynthesis, response to stress and pathogenesis, some of them being members of calmodulin–calcineurin pathway. Therefore, the impact of calmodulin inhibition was explored. Calmodulin inhibition restored caspofungin susceptibility, decreased capacity to respond to stress conditions, and reduced biofilm formation and in vivo pathogenicity. Conclusions Our findings confirm that calmodulin-calcineurin-Crz1 could provide a relevant target in life-threatening invasive candidiasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.