Two-dimensional gel electrophoresis was used to identify differentially displayed proteins expressed during the symbiotic interaction between the bacterium Sinorhizobium meliloti strain 1021 and the legume Melilotus alba (white sweetclover). Our aim was to characterize novel symbiosis proteins and to determine how the two symbiotic partners alter their respective metabolisms as part of the interaction, by identifying gene products that are differentially present between the symbiotic and non-symbiotic states. Proteome maps from control M. alba roots, wild-type nodules, cultured S. meliloti, and S. meliloti bacteroids were generated and compared. Over 250 proteins were induced or up-regulated in the nodule, compared with the root, and over 350 proteins were down-regulated in the bacteroid form of the rhizobia, compared with cultured cells. N-terminal amino acid sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry peptide mass fingerprint analysis, in conjunction with data base searching, were used to assign putative identity to nearly 100 nodule, bacterial, and bacteroid proteins. These included the previously identified nodule proteins leghemoglobin and NifH as well as proteins involved in carbon and nitrogen metabolism in S. meliloti. Bacteroid cells showed down-regulation of several proteins involved in nitrogen acquisition, including glutamine synthetase, urease, a urea-amide binding protein, and a PII isoform, indicating that the bacteroids were nitrogen proficient. The down-regulation of several enzymes involved in polyhydroxybutyrate synthesis and a cell division protein was also observed. This work shows that proteome analysis will be a useful strategy to link sequence information and functional genomics.
Proteome analysis was used to establish the first two-dimensional protein map of Rhizobium. R. leguminosarum bv. trifolii strain ANU843 was grown in defined medium in the presence and absence of the flavonoid 7,4'-dihydroxyflavone. Over 1,700 constitutive proteins were resolved, representing about 30% of the estimated genomic output. Proteome analysis of flavonoid-treated cells was done to reveal differentially displayed proteins. The results showed that while the global expression pattern of proteins was largely unaltered by the treatment, four inducible proteins were observed. The four inducible proteins and 20 constitutively expressed proteins were subjected to sequence analysis to provide internal standards for the construction of a two-dimensional Rhizobium protein data base. The identity of 12 proteins, including NodE and NodB, was established. NodE was present throughout the growth of the cells but was diminished in amount in stationary phase cells whereas NodB was not detected in the later stages of growth. Two of the induced proteins sequenced did not match any known nodulation gene product, with one of these being present in mid-late log and stationary phase cells and possessing four consecutive His residues at the N-terminal sequencing was successful with 100 to 200 fmol of protein. Proteome analysis provides a sensitive new tool to examine plant-microbe interactions.
Metal-protein interactions are vitally important in all living organisms. Metalloproteins, including structural proteins and metabolic enzymes, participate in energy transfer and redox reactions or act as metallochaperones in metal trafficking. Among metal-associated diseases, T cell mediated allergy to nickel (Ni) represents the most common form of human contact hypersensitivity. With the aim to elucidate disease-underlying mechanisms such as Ni-specific T cell activation, we initiated a proteomic approach to identify Ni-interacting proteins in human B cells. As antigen presenting cells, B cells are capable of presenting MHC-associated Ni-epitopes to T cells, a prerequisite for hapten-specific T cell activation. Using metal-affinity enrichment, 2-DE and MS, 22 Ni-interacting proteins were identified. In addition to known Ni-binding molecules such as tubulin, actin or cullin-2, we unexpectedly discovered that at least nine of these 22 proteins belong to stress-inducible heat shock proteins or chaperonins. Enrichment was particularly effective for the hetero-oligomeric TRiC/CCT complex, which is involved in MHC class I processing. Blue Native/SDS electrophoresis analysis revealed that Ni-NTA-beads specifically retained the complete protein machinery, including the associated chaperonin substrate tubulin. The apparent Ni-affinity of heat shock proteins suggests a new function of these molecules in human Ni allergy, by linking innate and adaptive immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.