[1] A Conjugate Point Equatorial Experiment (COPEX) campaign was conducted during the October-December 2002 period in Brazil, with the objective to investigate the equatorial spread F/plasma bubble irregularity (ESF) development conditions in terms of the electrodynamical state of the ionosphere along the magnetic flux tubes in which they occur. A network of instruments, including Digisondes, optical imagers, and GPS receivers, was deployed at magnetic conjugate and dip equatorial locations in a geometry that permitted field line mapping of the conjugate E layers to dip equatorial F layer bottomside. We analyze in this paper the extensive Digisonde data from the COPEX stations, complemented by limited all-sky imager conjugate point observations. The Sheffield University Plasmasphere-Ionosphere Model (SUPIM) is used to assess the transequatorial winds (TEW) as inferred from the observed difference of h m F 2 at the conjugate sites. New results and evidence on the ESF development conditions and the related ambient electrodynamic processes from this study can be highlighted as follows: (1) large-scale bottomside wave structures/satellite traces at the equator followed by their simultaneous appearance at conjugate sites are shown to be indicative of the ESF instability initiation; (2) the evening prereversal electric field enhancement (PRE)/ vertical drift presents systematic control on the time delay in SF onset at off-equatorial sites indicative of the vertical bubble growth, under weak transequatorial wind; (3) the PRE presents a large latitude/height gradient in the Brazilian sector; (4) conjugate point symmetry/asymmetry of large-scale plasma depletions versus smaller-scale structures is revealed; and (5) while transequatorial winds seem to suppress ESF development in a case study, the medium-term trend in the ESF seems to be controlled more by the variation in the PRE than in the TEW during the COPEX period. Competing influences of the evening vertical plasma drift in favoring the ESF development and that of the TEW in suppressing its growth are discussed, presenting a perspective on the ESF day-to-day and medium-term variabilities.
Solar radiation sustains and affects all life forms on Earth. In recent years, the increase in environmental levels of solar-UV radiation due to depletion of the stratospheric ozone layer, as a result of anthropogenic emission of destructive chemicals, has highlighted serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions, where the intensity of solar radiation is higher. To better understand the impact of the harmful effects of solar-UV radiation on the DNA molecule, we developed a reliable biological monitoring system based on the exposure of plasmid DNA to artificial UV lamps and sunlight. The determination and quantification of different types of UV photoproducts were performed through the use of specific DNA repair enzymes and antibodies. As expected, a significant number of CPDs and 6-4PPs was observed when the DNA-dosimeter system was exposed to increasing doses of UVB radiation. Moreover, CPDs could also be clearly detected in plasmid DNA when this system was exposed to either UVA or directly to sunlight. Interestingly, although less abundant, 6-4PPs and oxidative DNA damage were also generated after exposure to both UVA and sunlight. These results confirm the genotoxic potential of sunlight, reveal that UVA may also produce CPDs and 6-4PPs directly in naked DNA and demonstrate the applicability of a DNA-dosimeter system for monitoring the biological effects of solar-UV radiation.
In the equatorial atmosphere, oscillations with periods of 3 to 4 days have been observed in the meteor radar zonal wind at Cariri (7.4°S, 36.5°W), in the ionospheric minimum virtual height h'F and the maximum critical frequency foF2 at Fortaleza (3.9°S, 38.4°W), and in the TIMED/SABER satellite temperature data in the stratosphere‐mesosphere. Wavelet analyses of these time series reveal that the 3–4‐day oscillation was observed for all of these data during the period from March 1 to 11, 2005. From the characteristics of the downward phase propagation (wavelength of ∼40 km), longitudinal and latitudinal extension, we conclude that this oscillation must be a 3.5–day Ultra Fast Kelvin (UFK) wave. This is the first report of clear evidence of propagation of a UFK wave from the stratosphere to the ionosphere. The UFK wave could have an important role in the day‐to‐day variability of the equatorial ionosphere evening uplift.
[1] We analyze in detail the zonal velocities of large-scale ionospheric plasma depletions over two conjugate stations inferred from OI 630 nm airglow all-sky images obtained during the Conjugate Point Equatorial Experiment (COPEX) campaign carried out in Brazil between October and November 2002. The conjugate stations were Boa Vista (BV) (geogr. 2.8N, 60.7W, dip angle 22.0°N) and Campo Grande (CG) (geogr. 20.5S, 54.7W, dip angle 22.32°S). Over Campo Grande, the zonal velocities were measured also by a system of spaced GPS scintillation receivers. The airglow zonal velocities at the conjugate sites were seen to agree very closely, except for a slightly increased velocity over CG which we attribute to the presence of the geomagnetic anomaly. The results show a high degree of alignment of the bubbles along the geomagnetic field lines during the bubble development phase and as the bubbles travel eastward, thereby suggesting that the neutral zonal wind effect in the zonal plasma motion is an integrated effect along the flux tube. The zonal velocities obtained from the GPS technique were always larger than those calculated by the airglow technique, which permitted observation of zonal plasma velocity shear between the altitudes of the airglow emitting layer and of the GPS scintillation. Theoretical ambient plasma zonal velocities calculated using the formulations by and Eccles (1998) are compared with the experimental results. Our results also reveal some degree of dependence of the zonal velocities on the solar flux (F10.7) and magnetic (Kp) indices during the COPEX period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.