Abstract:A nematic liquid crystal (NLC) layer with the anisotropy axis modulated at a fixed rate q in the transverse direction is considered. If the layer locally constitutes a half-wave plate, then the thin-screen approximation predicts 100% -efficient diffraction of normal incident wave. The possibility of implementing such a layer via anchoring at both surfaces of a cell with thickness L is studied as a function of parameter qL and threshold values of this parameter are found for a variety of cases. Distortions of the structure of director in comparison with the preferable ideal profile are found via numerical modeling. Freedericksz transition is studied for this configuration. Coupled-mode theory is applied to light propagation through such cell allowing to account for walk-off effects and effects of nematic distortion. In summary, this cell is suggested as a means for projection display; high efficiency is predicted.
The Vector Vortex Coronagraph (VVC) is one of the most attractive new-generation coronagraphs for ground-and space-based exoplanet imaging/characterization instruments, as recently demonstrated on sky at Palomar and in the laboratory at JPL, and Hokkaido University. Manufacturing technologies for devices covering wavelength ranges from the optical to the mid-infrared, have been maturing quickly. We will review the current status of technology developments supported by NASA in the USA (Jet Propulsion Laboratory-California Institute of Technology, University of Arizona, JDSU and BEAMCo), Europe (University of Liège, Observatoire de ParisMeudon, University of Uppsala) and Japan (Hokkaido University, and Photonics Lattice Inc.), using liquid crystal polymers, subwavelength gratings, and photonics crystals, respectively. We will then browse concrete perspectives for the use of the VVC on upcoming ground-based facilities with or without (extreme) adaptive optics, extremely large ground-based telescopes, and space-based internal coronagraphs.
We measured transient photoinduced birefringence (delta n) in various azobenzene dye films by pumping with a nanosecond pulse at 532 nm and probing at 633 nm. The switch-on times for the photoinduced birefringence range from nanoseconds to milliseconds and are systematically related with the lowest optical transition energies for those films. Moreover, our results suggest that the transient photoinduced birefringence measurement is a convenient way to determine the relative energies of pi-pi(*) and n-pi(*) states in azo-based materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.