Cellulose and cellulose derivatives are biopolymers which are often used as stationary phases for the separation of enantiomers. Describing the mechanism of such separations is a difficult task due to the complexity of these phases. In the present study, we attempt to elucidate the types of interactions occurring between a diol intermediate for a LTD(4) antagonist and a tris(4-methylbenzoate)-derivatized cellulose stationary phase. Thermodynamic studies indicate that, at low temperatures, the enantioselectivity is entropy driven. At higher temperatures, the separation is enthalpy driven. DSC and IR experiments reveal that the transitions between the enthalpic and the entropic regions of the van't Hoff plots are a result of a change in conformation of the stationary phase. Investigation of chromatographic kinetic parameters reveals that, at low temperature, the second eluted enantiomer undergoes sluggish inclusion interactions. Subtle changes in the structure of the analyte indicates that π-π interactions do not contribute to enantioselectivity. Finally, molecular modeling of (R)- and (S)-diol and the stationary phase suggests that hydrogen bonding is a primary factor in the separation, and the calculated energy values obtained from the molecular modeling correlate well with the chromatographic elution order.
The reduction of tertiary phosphine oxides (TPOs) and sulfides with diisobutylaluminum hydride (DIBAL-H) has been studied in detail. An extensive solvent screen has revealed that hindered aliphatic ethers, such as MTBE, are optimum for this reaction at ambient temperature. Many TPOs undergo considerable reduction at ambient temperature and then stall due to inhibition. 31P and 13C NMR studies using isotopically labeled substrates as well as competition studies have revealed that the source of this inhibition is tetraisobutyldialuminoxane (TIBAO), which builds up as the reaction proceeds. TIBAO selectively coordinates the TPO starting material, preventing further reduction. Several strategies have been found to circumvent this inhibition and obtain full conversion with this extremely inexpensive reducing agent for the first time. Practical reduction protocols for these critical targets have been developed.
A series of novel, efficient, air-stable, and tunable chiral bisdihydrobenzooxaphosphole ligands (BIBOPs) were developed for rhodium-catalyzed hydrogenations of various functionalized olefins such as alpha-arylenamides, alpha-(acylamino)acrylic acid derivatives, beta-(acylamino)acrylates, and dimethyl itaconate with excellent enantioselectivities (up to 99% ee) and reactivities (up to 2000 TON).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.