Cellulose and cellulose derivatives are biopolymers which are often used as stationary phases for the separation of enantiomers. Describing the mechanism of such separations is a difficult task due to the complexity of these phases. In the present study, we attempt to elucidate the types of interactions occurring between a diol intermediate for a LTD(4) antagonist and a tris(4-methylbenzoate)-derivatized cellulose stationary phase. Thermodynamic studies indicate that, at low temperatures, the enantioselectivity is entropy driven. At higher temperatures, the separation is enthalpy driven. DSC and IR experiments reveal that the transitions between the enthalpic and the entropic regions of the van't Hoff plots are a result of a change in conformation of the stationary phase. Investigation of chromatographic kinetic parameters reveals that, at low temperature, the second eluted enantiomer undergoes sluggish inclusion interactions. Subtle changes in the structure of the analyte indicates that π-π interactions do not contribute to enantioselectivity. Finally, molecular modeling of (R)- and (S)-diol and the stationary phase suggests that hydrogen bonding is a primary factor in the separation, and the calculated energy values obtained from the molecular modeling correlate well with the chromatographic elution order.
Cardiovascular disease of major and minor arteries is a common cause of death in Western society. The wall mechanics and haemodynamics within the arteries are considered to be important factors in the disease formation process. This paper is concerned with the development of an efficient computer-integrated technique to manufacture idealized and realistic models of diseased major and minor arteries from radiological images and to address the issue of model wall thickness variability. Variations in wall thickness from the original computer models to the final castings are quantified using a CCD camera. The results found that wall thickness variation from the major and minor idealized artery models to design specification were insignificant, up to a maximum of 16 per cent. In realistic models, however, differences were up to 23 per cent in the major arterial models and 58 per cent in the minor arterial models, but the wall thickness variability remained within the limits of previously reported wall thickness results. It is concluded that the described injection moulding procedure yields idealized and realistic castings suitable for use in experimental investigations, with idealized models giving better agreement with design. Wall thickness is variable and should be assessed after the models are manufactured.
The melanocortin receptors have been implicated as potential targets for a number of important therapeutic indications, including inflammation, sexual dysfunction, and obesity. We identified compound 1, an arylpiperazine attached to the dipeptide H-d-Tic-d-p-Cl-Phe-OH, as a novel melanocortin subtype-4 receptor (MC4R) agonist through iterative directed screening of nonpeptidyl G-protein-coupled receptor biased libraries. Structure-activity relationship (SAR) studies demonstrated that substitutions at the ortho position of the aryl ring improved binding and functional potency. For example, the o-isopropyl-substituted compound 29 (K(i) = 720 nM) possessed 9-fold better binding affinity compared to the unsubstituted aryl ring (K(i) = 6600 nM). Sulfonamide 39 (K(i) = 220 nM) fills this space with a polar substituent, resulting in a further 2-fold improvement in binding affinity. The most potent compounds such as the diethylamine 44 (K(i) = 60 nM) contain a basic group at this position. Basic heterocycles such as the imidazole 50 (K(i) = 110 nM) were similarly effective. We also demonstrated good oral bioavailability for sulfonamide 39.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.