A thermally induced irreversible conformational transition of amylose tris(3,5-dimethylphenylcarbamate) (i.e., Chiralpak AD) chiral stationary phase (CSP) in the enantioseparation of dihydropyrimidinone (DHP) acid racemate was studied for the first time by quasi-equilibrated liquid chromatography with cyclic van't Hoff and step temperature programs and solid-state ((13)C CPMAS and (19)F MAS) NMR using ethanol and trifluoroacetic acid (TFA)-modified n-hexane as the mobile phase. The conformational transition was controlled by a single kinetically driven process, as evidenced by the chromatographic studies. Solid-state NMR was used to study the effect of the temperature on the conformational change of the solvated phase (with or without the DHP acid enantiomers and TFA) and provided some viable structural information about the CSP and the enantiomers.
An investigation into the cause of substrate specific hydrogenation performance variability was conducted. A significant and unexpected correlation was observed between apparent pH of a solution of the substrate and rate of conversion and enantioselectivity. This observation led to the examination of low and variable levels of native ammonium chloride in different lots of substrate. The presence of ammonium chloride was found to have a positive effect on reaction rate and enantioselectivity when controlled within a relatively narrow range. Optimal performance was achieved with a mole ratio of 1:1 ammonium chloride to catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.