Birefringent magnetophotonic crystals are found to exhibit degeneracy breaking for asymmetric contradirectional coupling in planar waveguides. Fundamental to high-order local normal mode coupling leads to partially overlapping gyrotropic bandgaps inside the Brillouin zone and partial suppression of Bloch mode propagation. A large magneto-optically active reorientation in polarization state is found for allowed Bloch modes at bandgap edges.
Faraday-effect-active photonic band gap structures fabricated in iron garnet films are shown to provide a platform for optical sensing based on refractive index detection. Strong near-band gap-edge polarization rotations serve as a sensitive probe to cover-index changes in birefringent magneto-optic waveguides. A wide index range from air to n = 1.6 is explored. Device sensitivity is found to improve with cover index increase. Theoretical analysis of Bloch modes polarization state shows large near stop-band edge rotations and strong sensitivity to cover index. The combined effects of geometrical waveguide birefringence and Faraday rotation contribute to the strength of the sensor response.
We report on a magneto-photonic crystal on-chip optical sensor for specific analyte detection with polypyrrole and gold nano particles as modified photonic crystal waveguide cover layers. The reaction of the active sensor material with various analytes modifies the electronic structure of the sensor layer causing changes in its refractive index and a strong transduction signal. Magneto-photonic crystal enhanced polarization rotation sensitive to the nature of the cover layer detects the index modification upon analyte adsorption. A high degree of selectivity and sensitivity are observed for aqueous ammonia and methanol with polypyrrole and for thiolated-gold-with gold-nanoparticles covers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.