Thioacetamide (TAA) is widely used to study liver toxicity accompanied by oxidative stress, inflammation, cell necrosis, fibrosis, cholestasis, and hepatocellular carcinoma. As an efficient free radical’s scavenger, C60 fullerene is considered a potential liver-protective agent in chemically-induced liver injury. In the present work, we examined the hepatoprotective effects of two C60 doses dissolved in virgin olive oil against TAA-induced hepatotoxicity in rats. We showed that TAA-induced increase in liver oxidative stress, judged by the changes in the activities of SOD, CAT, GPx, GR, GST, the content of GSH and 4-HNE, and expression of HO-1, MnSOD, and CuZnSOD, was more effectively ameliorated with a lower C60 dose. Improvement in liver antioxidative status caused by C60 was accompanied by a decrease in liver HMGB1 expression and an increase in nuclear Nrf2/NF-κB p65 ratio, suggesting a reduction in inflammation, necrosis and fibrosis. These results were in accordance with liver histology analysis, liver comet assay, and changes in serum levels of ALT, AST, and AP. The changes observed in gut microbiome support detrimental effects of TAA and hepatoprotective effects of low C60 dose. Less protective effects of a higher C60 dose could be a consequence of its enhanced aggregation and related pro-oxidant role.
Screens of antioxidant activity (AA) of various natural products have been a focus of the research community worldwide. This work aimed to differentiate selected samples of Merlot wines originated from Montenegro, with regard to phenolic profile and antioxidant capacity studied by survival rate, total sulfhydryl groups and activities of glutathione peroxidase (GPx), glutathione reductase and catalase in H2O2–stressed Saccharomyces cerevisiae cells. In this study, DPPH assay was also performed. Higher total phenolic content leads to an enhanced AA under both conditions. The same trend was observed for catechin and gallic acid, the most abundant phenolics in the examined wine samples. Finally, the findings of an Artificial Neural Network (ANN) model were in a good agreement (r2 = 0.978) with the experimental data. All tested samples exhibited a protective effect in H2O2–stressed yeast cells. Pre-treatment with examined wines increased survival in H2O2–stressed cells and shifted antioxidative defense towards GPx–mediated defense. Finally, sensitivity analysis of obtained ANN model highlights the complexity of the impact that variations in the concentrations of specific phenolic components have on the antioxidant defense system.
Medlar is the fruit of Mespilus germanica L. in the family of Rosaceae. The fruit can be eaten only if ‘bletted’ (softened by frost or longer storage). The effect of the maturation stages on the volatile compounds of the medlar fruit was investigated during two different stages. Volatile flavour substances were isolated from the minced pulp of unripe and full ripe medlar fruits by simultaneous steam distillation extraction (SDE) with methilen chloride as the extracting solvent. The concentrate was analysed by GC-FID-MS. Hexanoic and hexadecanoic acids were the predominant acids, hexanal and (E)-2-hexenal were the predominant aldehydes, (Z)-3-hexenol and hexanol were the predominant alcohols, with p-cymene, terpinen-4-ol, and γ-terpiene (the terpenes responsible for the characteristic medlar flavour) being also present. The C6 aliphatic compounds, such as hexanal and (E)-2-hexenal, were observed as the major volatile constituents in the green stage. In contrast, hexanol and (Z)-3-hexenol were the main volatiles in ripe fruits
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.