Abstract.A homogenization method to model a stack of second generation (2G) High Temperature Superconducting (HTS) tapes under AC applied transport current or magnetic field has been obtained. The idea is to find an anisotropic bulk equivalent for the stack, such that the geometrical layout of the internal alternating structures of insulating, metallic, superconducting and substrate layers is "washed" out while keeping the overall electromagnetic behavior of the original stack. We disregard assumptions upon the shape of the critical region and use a power law E-J relationship allowing for overcritical current densities to be considered. The method presented here allows for a computational speedup factor of up to 2 orders of magnitude when compared to full 2-D simulations taking into account the actual dimensions of the stacks without compromising accuracy.
We have examined the potential of 10 MW superconducting direct drive generators to enter
the European offshore wind power market and estimated that the production of about 1200
superconducting turbines until 2030 would correspond to 10% of the EU offshore market.
The expected properties of future offshore turbines of 8 and 10 MW have been
determined from an up-scaling of an existing 5 MW turbine and the necessary
properties of the superconducting drive train are discussed. We have found that
the absence of the gear box is the main benefit and the reduced weight and size
is secondary. However, the main challenge of the superconducting direct drive
technology is to prove that the reliability is superior to the alternative drive trains
based on gearboxes or permanent magnets. A strategy of successive testing of
superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and
10 MW is suggested to secure the accumulation of reliability experience. Finally, the
quantities of high temperature superconducting tape needed for a 10 kW and an
extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively.
A more realistic estimate is 200–300 km of tape per 10 MW generator and it is
concluded that the present production capacity of coated conductors must be
increased by a factor of 36 by 2020, resulting in a ten times lower price of the
tape in order to reach a realistic price level for the superconducting drive train.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In this paper the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational speeds, because high magnetic fields can be produced by coils with very little loss.Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors (LTS); one is based on high temperature superconductors (HTS); and one is a fully superconducting generator based on MgB 2 . It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity.Such generators are however not without their challenges. The superconductors have to be cooled down to somewhere between 4K and 50K, depending on what type of superconductor is employed, which poses a significant challenge both from a construction and operation point of view. The high temperature superconductors can facilitate a higher operation temperature and simplified cooling, but the current price and production volumes prohibit a large scale impact on the wind sector. The low temperature superconductors are readily available, but will need more sophisticated cooling.Eventually the CoE from superconducting wind turbines, with particular emphasis on reliability, will determine if they become feasible or not and for such investigations large-scale demonstrations will be needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.