In terms of interlayer trions, electronic excitations in van der Waals heterostructures (vdWHs) can be classified into Type I (i.e., two identical charges in the same layer) and Type II (i.e., two identical charges in the different layers). Type I interlayer trions are investigated theoretically and experimentally. By contrast, Type II interlayer trions remain elusive in vdWHs, due to inadequate free charges, unsuitable band alignment, reduced Coulomb interactions, poor interface quality, etc. Here, the first observation of Type II interlayer trions is reported by exploring band alignments and choosing an atomically thin organic–inorganic system—monolayer WSe2/bilayer pentacene heterostructure (1L + 2L HS). Both positive and negative Type II interlayer trions are electrically tuned and observed via PL spectroscopy. In particular, Type II interlayer trions exhibit in‐plane anisotropic emission, possibly caused by their unique spatial structure and anisotropic charge interactions, which is highly correlated with the transition dipole moment of pentacene. The results pave the way to develop excitonic devices and all‐optical circuits using atomically thin organic–inorganic bilayers.
Correction for ‘Realization of a piezoelectric quantum spin Hall phase with a large band gap in MBiH (M = Ga and In) monolayers’ by Y. H. Wang et al., J. Mater. Chem. A, 2022, 10, 25683–25691, https://doi.org/10.1039/D2TA04206A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.