Hybrid rice has contributed significantly to the world food security. Breeding of elite high-yield, strong-resistant broad-spectrum restorer line is an important strategy for hybrid rice in commercial breeding programs. Here, we developed three elite brown planthopper (BPH)-resistant wide-spectrum restorer lines by pyramiding big-panicle gene Gn8.1, BPH-resistant genes Bph6 and Bph9, fertility restorer genes Rf3, Rf4, Rf5, and Rf6 through molecular marker assisted selection. Resistance analysis revealed that the newly developed restorer lines showed stronger BPH-resistance than any of the single-gene donor parent Luoyang-6 and Luoyang-9. Moreover, the three new restorer lines had broad spectrum recovery capabilities for Honglian CMS, Wild abortive CMS and two-line GMS sterile lines, and higher grain yields than that of the recurrent parent 9,311 under nature field conditions. Importantly, the hybrid crosses also showed good performance for grain yield and BPH-resistance. Thus, the development of elite BPH-resistant wide-spectrum restorer lines has a promising future for breeding of broad spectrum BPH-resistant high-yield varieties.
Seed vigor is an important character of seed quality that promotes rice to germinate rapidly from soil and developing to a strong seedling, especially in the current rice direct-sowing production system. However, previous studies for seed vigor mainly concentrate in cultivars, and less reports involving in wild rice. In this study, 152 backcross inbred lines (BILs) derived from wild rice Oryza longistaminata were genotyped with re-sequencing technology, and QTLs for seed vigor related traits under normal and artificial aging treatment were analyzed. Totally, 36 QTLs were detected, of which, eight for germination potential (GP), 10 for germination rate (GR), 9 for seedling length (SL), and 9 for root length (RL). Among these, 14 novel QTLs were identified from O. longistaminata. Of which, six QTLs were related to germination, and eight related to seedling growth under aging stress. What’s more, the major QTLs q9SL1.1, q6SL1.1, and q3SL1.1 for seedling length were fallen in the same locus and fine-mapped an interval about 90 Kb. The major QTLs q9GR8.1 and q9GP8.1 related with germination were fine-mapped to an interval about 90 Kb. This work will provide us basis for breeding of high seed vigor rice in rice breeding programs and further cloning of these genes.
BackgroundRice is one of the most important crops, and it is essential to improve rice productivity to satisfy the future global food supply demands. Gn1a (OsCKX2), which encodes cytokinin oxidase/dehydrogenase, plays an important role in regulating rice grain yield.ResultsIn this study, we analyzed the genetic variation of Gn1a, which influences grain yield through controlling the number of spikelets in rice. The allelic variations in the promoter, 5’ untranslated region (UTR) and coding sequence (CDS) of Gn1a were investigated in 175 cultivars and 21 wild rice accessions. We found that Gn1a showed less sequence variation in the cultivars, but exhibited significant nucleotide diversity in wild rice. A total of 14 alleles, named AP1 to AP14, were identified in the cultivars based on the amino acid divergence of GN1A. Association analysis revealed that the number of spikelets and grain yield were significantly different between the different alleles. Phylogenetic analysis indicated that the three main alleles, AP3, AP8 and AP9, in the cultivars might originate from a common ancestor allele, AP1, in wild rice.ConclusionsOf these alleles in the cultivars, AP9 was suggested as the best allele in indica, as it has shown strong artificial selection in breeding high-yield rice in the past. It might be valuable to explore the high-yield-related alleles of Gn1a to develop high-yield rice cultivars in future breeding programs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12284-015-0071-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.