The grounding device plays performs the role of releasing a lightning current and a fault current in the power system, and the corrosion of the conductor will cause damage to the grounding body, which threatens the safe operation of the power system. The grounding grid corrosion detection technology and equipment guarantee the safe operation of the power system. This paper discusses the research status of grounding corrosion and topological detection in detail and introduces the basic principles, research difficulties and existing problems of the methods such as the electric network method, electromagnetic field method, electrochemical method, ultrasonic detection method and electromagnetic imaging method. The methods of electromagnetic imaging and time difference positioning proposed in recent years have been also discussed in detail. The paper points out that the application of grounding grid corrosion detection distance engineering still faces great challenges and that multi-disciplinary, multi-information fusion, new sensing technology, big data platforms and intelligent computing will be the trends to follow in research on grounding grid fault, corrosion detection and life prediction.
The transient electromagnetic (TEM) method is a widely used nonintrusive geophysical method for ground exploration. Due to the mutual inductance between the transmitter (TX) coil and the receiver (RX) coil, the primary field generated by the emission current reduces the accuracy of the near-surface detection. Because the feature signal [Formula: see text] carrying the target information is mainly distributed in the early secondary-field response, the expanded detection signal will reduce the near-surface investigation capability of the TEM device due to the following three aspects: the loss of the proportion of [Formula: see text] in the detection signal due to the excessively high primary-field response, the loss of [Formula: see text] due to the clipping loss, and the reduction of the noise margin in the case in which the detection signal is magnified. These problems are particularly significant in small-loop devices due to the tight coil distribution. The mutual inductance can be reduced by adjusting the relative positions of the TX and RX coils, a configuration called the weak-coupling coil design. We have analyzed the design principle of the weak-coupling coil design and developed a new design scheme — the crossing-loop design. Simulation results indicate that the crossing-loop design performs superiorly in terms of the detection sensitivity and the investigation depth, compared with the nonweak-coupling coil design and other weak-coupling coil designs such as the gradient coils, opposing coils, and the bucking coil design. The experimental results indicate that the crossing-loop design provides much better near-surface investigation capability than the central-loop device with the same TX coil, which is a typical nonweak-coupling coil design.
Seismic imaging is the most effective geophysical method and has been extensively implemented to detect potential geological hazards in tunnels during construction. The coupling of geophones and the design of geometry in tunnels are the two major challenges. To ensure successful coupling, a high-sensitivity semi-automatic coupling geophone with a broadband was designed. In practice, this geophone is attached with a wheel and two springs. Once inserted into the borehole, an automatic coupling action occurs. This semi-automatic coupling design within the geophone not only guarantees good coupling, but reduces the time and costs usually required to install a traditional geophone. In the use of geophones for tunnel seismic detection, we propose two new two-dimensional (2D) seismic geometries based on the two commonly used geometries. A test to assess the effectiveness of the qualities of imaging from four geometries was completed by comparing the results of the forward modeling of sandwich models. The conclusion is that the larger the horizontal offset of the layout geometry, the higher the resolution of the imaging; the larger the vertical offset, the weaker the mirror image. The vertical offset is limited due to the narrow tunnel condition. Therefore, the mirror effect cannot be entirely eliminated; however, it can be further suppressed by constructing 2D geometry. The two newly proposed 2D geometries caused the imaging arc of the inter-layer, but suppressed the mirror image. The mirror image added a significant number of errors to the data, which could misguide tunnel construction; therefore the new 2D geometries are more reasonable than the two most commonly used. We applied one of the two new 2D geometries that was more practical to an actual project, the Chongqing Jinyunshan Tunnel in China, and acquired high-quality seismic data using two semi-automatic coupling geophones. The detection results were essentially consistent with the excavation conclusions.
The tunnel seismic method allows for the detection of the geology in front of a tunnel face for the safety of tunnel construction. Conventional geophones have problems such as a narrow spectral width, low sensitivity, and poor coupling with the tunnel wall. To tackle issues above, we propose a semi-automatic coupling geophone equipped with a piezoelectric sensor with a spectral range of 10–5000 Hz and a sensitivity of 2.8 V/g. After the geophone was manually pushed into the borehole, it automatically coupled with the tunnel wall under the pressure of the springs within the device. A comparative experiment showed that the data spectrum acquired by the semi-automatic coupling geophone was much higher than that of the conventional geophone equipped with the same piezoelectric sensor. The seismic data were processed in combination with forward modeling. The imaging results also show that the data acquired by the semi-automatic coupling geophone were more in line with the actual geological conditions. In addition, the semi-automatic coupling geophone’s installation requires a lower amount of time and cost. In summary, the semi-automatic coupling geophone is able to efficiently acquire seismic data with high fidelity, which can provide a reference for tunnel construction safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.