Ceramic suspension is a basic ingredient for various ceramic processing, and designing a ceramic suspension system is important to secure material processability in various applications. Especially when engineering ceramics, a highly loaded ceramic suspension is essential to fabricate dense ceramic bodies for proper mechanical properties. However, as solid loading increases, the viscosity of ceramic suspension keeps increasing and shows a shear-thickening behavior under a shear condition, which makes suspension formulation a challenging issue of interest. Herein, a strategy to design highly loaded ceramic suspension with optimal organic materials system is given based on the systematic correlation between solubility parameter of organic materials system and rheological processability of highly loaded ceramic suspensions. Especially with silicon nitride suspension that generally suffers from inferior rheological processability, a trend between solubility parameter of organic dispersing media and rheological behavior of suspensions is defined as a material selection guideline. Based on this selection strategy, a photocurable monomer is selected as an optimal dispersing media and directly applied to prepare highly loaded silicon nitride suspension (%51 vol%) showing low viscosity and a shear-thinning behavior. The designed ceramic suspension is successfully applied to a photocuring-based additive manufacturing process, the digital light processing, for fabrication of various 3D silicon nitride shapes.
Novel Li-ion battery inks are integral elements to increase mechanical integrity and energy density of 3D printable batteries. Conventional battery inks have been limited to the Polyvinylidene fluoride (PVdF) and N-methyl-2 pyrrolidon (NMP) solvent that are unpleasant of long drying process and environmentally hazard solvent. As a novel Li-ion battery ink for highly energy densified 3D printable batteries, we have developed acrylate-based curable inks which demonstrate fast process, highly cross-linked polymerization and more ecofriend suspension. Here, we report a novel development of curable LIB ink with fundamental studies of rheology, curing behavior and electrochemical performances. The viscosity and activation energy of curable LIB inks are low and shear shinning behavior and 118.9 kJ/mol, respectively, which are appropriate for the extrusion 3D printer with nozzle radius of 0.75 mm and the speed of 5 mm/sec. Furthermore, electrochemical performance of capacity, oxidation peak and cycle retention is comparable to conventionally fabricated electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.