Fluoroquinolones (FQs) are a critical group of antimicrobials prescribed in urological infections as they have a broad antimicrobial spectrum of activity and a favorable tissue penetration at the site of infection. However, their clinical practice is not problem-free of treatment failure, risk of emergence of resistance, and rare but important adverse effects. Due to their critical role in clinical improvement, understanding the dose-response relation is necessary to optimize the effectiveness of FQs therapy, as it is essential to select the right antibiotic at the right dose for the right duration in urological infections. The aim of this study was to review the published literature about inter-individual variability in pharmacological processes that can be responsible for the clinical response after empiric dose for the most commonly prescribed urological FQs: ciprofloxacin, levofloxacin, and moxifloxacin. Interindividual pharmacokinetic (PK) variability, particularly in elimination, may contribute to treatment failure. Clearance related to creatinine clearance should be specifically considered for ciprofloxacin and levofloxacin. Likewise, today, undesired interregional variability in FQs antimicrobial activity against certain microorganisms exists. FQs pharmacology, patient-specific characteristics, and the identity of the local infecting organism are key factors in determining clinical outcomes in FQs use.
The consequences of non-adherence to treatment (NAT) on antimicrobial efficacy may depend on drug forgiveness—a property that should account for pharmacokinetics (PK) and pharmacodynamics (PD) as well as interindividual variability. In this simulation study, relative forgiveness (RF) in NAT, defined as the probability of a successful PK/PD target (PTA) attained under perfect adherence compared to imperfect adherence, was evaluated for amoxicillin (AMOX) (oral 1000 mg/8 h) and two respiratory fluoroquinolones—levofloxacin (LFX) (oral 750 mg/24 h) and moxifloxacin (MOX) (oral 400 mg/24 h)—in virtual outpatients with community-acquired pneumonia for S. pneumoniae. Several NAT scenarios (delay in dose intake and a missed dose) were considered. PK characteristics of virtual patients, including variability in creatinine clearance (70–131 mL/min) and S. pneumoniae susceptibility variability associated with geographical location, were simulated in NAT. In this regard, in regions of low MIC delays from 1h to 7h or omission of dose ingestion would not have negative consequences on the efficacy of AMOX because of its good RF associated with the AMOX PK and PD properties; RF of LFX 750 mg or MOX 400 mg/24 h regimen vs. AMOX 1000 mg/8 h is one. However, in regions of elevated MIC for S. pneumoniae AMOX loses its RF, LFX and MOX vs. AMOX, showing higher RF (>1) depending on the CLCR of patients. These results illustrate the importance of considering the RF of antimicrobial drugs in NAT and provide a framework for further studying its implications for clinical success rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.