When a powerful femtosecond laser pulse propagates in an optical medium, self-focusing occurs. Normally, it is the most powerful part (slice) of the pulse that self-focuses first during its propagation. Self-focusing is balanced by the creation of plasma in the self-focal volume, which defocuses the pulse. This balance leads to a limitation of the peak intensity (intensity clamping). The series of self-foci from different slices of the front part of the pulse give rise to the perception of a so-called filament. The back part of the pulse undergoes self-phase modulation and self-steepening resulting in a strong spectral broadening. The final pulse is a white-light laser pulse (supercontinuum). The physics of such (long distance) filamentation and the self-transformation process are reviewed both in air and in condensed matters. The self-transformation leads to a shorter pulse and is currently being studied for efficient pulse compression to the single and (or) few-cycle level. The efficient generation of a third harmonic in the filament is due to a new phenomenon called self-phase locking. The potential applications in atmospheric sensing and lightning control will be briefly discussed. The capability of melting glass leading to index change will be underlined. The paper will end with an outlook into the future of the field. PACS Nos.: 42.65, 42.65Jx, 42.25, 42.79Qx
We present a theoretical approach to the study of second- and third-harmonic generation from metallic structures and nanocavities filled with a nonlinear material in the ultrashort pulse regime. We model the metal as a two-component medium, using the hydrodynamic model to describe free electrons and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We study the effects of incident TE- and TM-polarized fields and show that a simple reexamination of the basic equations reveals additional, exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures
It is shown, both theoretically and experimentally, that during laser pulse filamentation in air an intense ultrashort third-harmonic pulse is generated forming a two-colored filament. The third-harmonic pulse maintains both its peak intensity and energy over distances much longer than the characteristic coherence length. We argue that this is due to a nonlinear phase-locking mechanism between the two pulses in the filament and is independent of the initial material wave-vector mismatch. A rich spatiotemporal propagation dynamics of the third-harmonic pulse is predicted. Potential applications of this phenomenon to other parametric processes are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.