In the present study, 13 Salmonella Infantis strains, which have been originated from Turkey, were selected due to their clinical and industrial relevance, sufficient biofilm producing capability and multidrug resistance. Although all tested strains were built up of thin pellicle, optimum pellicle formation has occurred at 28 C. All S. Infantis biofilms were categorized as 'bdar' morphotype following the incubation at both 20 and 28 C, while they were categorized as 'saw' morphotype at 37 C. Under a certain incubation temperature (28 C), 84.62% of strains have formed strong biofilm structures. By using the disk diffusion method, high levels of resistance have been observed among tested bacteria against nalidixic acid (100%), spectinomycin (100%), streptomycin (92.3%), tetracycline (92.3%), kanamycin (76.9%) and neomycin (76.9%). Further studies were performed with S. Infantis DMC 12 strain, due to its capability to produce biofilm and multidrug resistance phenotype. Gentamycin (>64 mg/mL, 2 £ MIC) and tetracycline (>128 mg/mL, 4 £ MIC) were determined as the most effective antibiotics against biofilm formation. The biofilm forms have showed increased antimicrobial resistance when it was compared to the planktonic bacteria. The highest resistance rates of the biofilm bacteria were observed to neomycin (12 £ MIC) followed by spectinomycin (10 £ MIC) and streptomycin (10 £ MIC). Biofilm structure was induced as a result of nalidixic acid, spectinomycin, tetracycline and neomycin treatment at sub-MIC concentrations of tested antibiotics.
Biofilm structures are the most resistant form of active microorganisms against sanitation, disinfection, and sterilization processes. One of the specific properties of biofilm is the development of antibiotic resistance that can be up to 1,000-fold greater than planktonic cells. Enterococcus faecium is a human pathogen that causes nosocomial bacteremia and at the present time, it is well known that most of the chronic infections are biofilm-based. Recent evidence suggested that subinhibitory concentrations (sub-MICs) of antibiotics have an important role in the evolution of antibiotic resistance and induction on biofilm formation. Based on this information, we aimed to determine the effect of subinhibitory antibiotic concentrations on biofilm formation and the role of the antibiotic concentrations on the enterococcal surface protein gene (esp). To determine the impact of clinically important antibiotics on biofilm production, crystal violet assay was used. Then, the effect of sub-MICs of antibiotics on the expression of the esp gene was investigated by quantitative real-time PCR. Biofilm production assays show that MIC/2 of erythromycin (ERT; 512 μg/ml), MIC/32 of vancomycin (VAN; 16 μg/ml), MIC/64 of streptomycin (STR; 32 μg/ml), and MIC/128 of kanamycin (KAN; 4 μg/ml) values induce maximum biofilm production compared with the control. According to q-PCR results, sub-MIC values of ERT, VAN, and STR antibiotics were found to enhance esp gene expression. In addition, despite the increasing biofilm production after KAN treatment, the antibiotic was not effective on the esp expression.
Currently, Salmonella enterica is the most common bacterial foodborne pathogen, causing serious extraintestinal disease. Typing methods play an important role on pathogens' source tracking, knowing the source(s) of bacteria in pharmaceutical sciences, preventing and controlling the diarrhea and food-poisoning outbreaks. The purpose of this study is to use different moleculer typing methods to determine the genetic variability of 38 foodborne Salmonella isolates that were previously identified by biochemical tests. The methods were evaluated by four molecular techniques including 16S rRNA sequencing, PFGE, PCR-RFLP and invA-spvC PCR. 16S rRNA sequencing results showed that four of the 38 isolates were Escherichia coli, Proteus mirabilis and Citrobacter murliniae, and the others were Salmonella enterica. Thirty-eight strains were subtyped by XbaI-PFGE into 20 profiles with different clusters, while they were subtyped by 16S rRNA-RFLP into 9 profiles with a single cluster. Out of two Salmonella isolates, the invasion gene (invA) was detected in all other Salmonella isolates (94%) and the virulence gene (spvC) was detected in 11% of Salmonella isolates. Our results suggested that the PFGE subtyping is the prominent method for the evaluation and benchmarking of molecular subtyping.
In this study, the effects of dam and seqA genes on the formation of pellicle and biofilm was determined using five different Salmonella serovars S. Group C1 (DMC2 encoded), S. Typhimurium (DMC4 encoded), S. Virchow (DMC11 encoded), S. Enteritidis (DMC22 encoded), and S. Montevideo (DMC89 encoded). dam and seqA mutants in Salmonella serovars were performed by the single step lambda red recombination method. The mutants obtained were examined according to the properties of biofilm on the polystyrene surfaces and the pellicle formation on the liquid medium. As a result of these investigations, it was determined that the biofilm formation properties on polystyrene surfaces decreased significantly (p < 0.05) in all tested dam and seqA mutants, while the pellicle formation properties were lost in the liquid medium. When pBAD24 vector, containing the dam and seqA genes cloned behind the inducible arabinose promoter, transduced into dam and seqA mutant strains, it was determined that the biofilm formation properties on the polystyrene surfaces reached to the natural strains' level in all mutant strains. Also, the pellicle formation ability was regained in the liquid media. All these data demonstrate that dam and seqA genes play an important role in the formation of biofilm and pellicle structures in Salmonella serovars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.