The present study demonstrates that chronic, but not acute, adminstration of several different classes of antidepressants, including serotonin- and norepinephrine-selective reuptake inhibitors, increases the expression of cAMP response element binding protein (CREB) mRNA in rat hippocampus. In contrast, chronic administration of several nonantidepressant psychotropic drugs did not influence expression of CREB mRNA, demonstrating the pharmacological specificity of this effect. In situ hybridization analysis demonstrates that antidepressant administration increases expression of CREB mRNA in CA1 and CA3 pyramidal and dentate gyrus granule cell layers of the hippocampus. In addition, levels of CRE immunoreactivity and of CRE binding activity were increased by chronic antidepressant administration, which indicates that expression and function of CREB protein are increased along with its mRNA. Chronic administration of the phosphodiesterase (PDE) inhibitors rolipram or papaverine also increased expression of CREB mRNA in hippocampus, demonstrating a role for the cAMP cascade. Moreover, coadministration of rolipram with imipramine resulted in a more rapid induction of CREB than with either treatment alone. Increased expression and function of CREB suggest that specific target genes may be regulated by these treatments. We have found that levels of brain-derived neurotrophic factor (BDNF) and trkB mRNA are also increased by administration of antidepressants or PDE inhibitors. These findings indicate that upregulation of CREB is a common action of chronic antidepressant treatments that may lead to regulation of specific target genes, such as BDNF and trkB, and to the long-term effects of these treatments on brain function.
Behavioral and electrophysiological evidence suggests that glutamatergic neurotransmission plays an important role in some of the long-term effects of cocaine and other drugs of abuse on brain function. We therefore examined the effect of repeated cocaine treatment on glutamate receptor subunit expression in central dopamine (DA) pathways implicated in many of cocaine's behavioral actions. By immunoblotting procedures using subunit-specific antibodies, we found that repeated, but not acute, cocaine treatment increased the levels of immunoreactivity of GluR1 (an AMPA receptor subunit) and NMDAR1 (an NMDA receptor subunit) in the ventral tegmental area (VTA), a nucleus containing mesolimbic DA neurons. In contrast, chronic cocaine treatment did not alter levels of GluR2 (an AMPA receptor subunit), NMDA2A/B (NMDA receptor subunits), or GluR6/7 (kainate receptor subunits) in this brain region. Moreover, GluR1 and NMDAR1 levels were not regulated in other regions of the mesolimbic or nigrostriatal DA pathways, including the substantia nigra. Because several drugs of abuse and stress can elicit common and cross-sensitizing effects on mesolimbic DA function, we next examined whether repeated morphine and stress treatments would regulate these proteins similarly in the VTA. Although morphine delivered by subcutaneous pellet implantation had no significant effect on subunit levels, morphine delivered intermittently by subcutaneous injections of escalating doses elevated GluR1 levels in the VTA. Repeated restraint stress also paradigm (2 stressors/d under variable conditions) increased both GluR1 and NMDAR1 levels in this brain region. Unlike cocaine, morphine, and stress, repeated treatment with other psychotropic drugs (haloperidol, raclopride, sertraline, and desipramine) that lack reinforcing or sensitizing properties did not regulate GluR1 or NMDAR1 subunit levels in the VTA. Increased glutamate receptor subunit expression in the VTA may represent an important molecular mechanism by which drugs of abuse and stress exert common, long-term effects on mesolimbic DA function.
Quantitative blot immunolabeling techniques were used to determine the concentrations of ERK1 (M(r) 44 kDa) and ERK2 (M(r) 42 kDa), the two major extracellular signal-regulated protein kinases, in different regions of rat brain. The aggregate ERK concentrations (ERK1 and ERK2) were relatively high in each of the brain regions studied, ranging from approximately 0.35 ng/microgram protein in cerebellum to approximately 1.2 ng/microgram protein in nucleus accumbens. However, differences in the regional distributions of ERK1 and ERK2 resulted in ratios of their relative abundance that differed by close to 10-fold among the regions studied. The ratios of ERK1 protein to ERK2 protein varied along a rostral-caudal gradient from a low of 0.16 in frontal cortex to a high of 1.5 in pons/medulla. In hypotonic homogenates from regions at either extreme of the gradient, ERK1 and ERK2 were both found to be predominantly (> 80%) soluble. In subcellular fractions prepared from sucrose homogenates of frontal cortex and pons/medulla, both ERK1 and ERK2 were enriched in the synaptosomal and cytosolic fractions, whereas ERK2 was also enriched in the microsomal fraction. By contrast, in subfractions containing purified nuclei, levels of ERK1 and ERK2 were about one-third of those seen in homogenates and, in subfractions enriched in mitochondria, both ERK1 and ERK2 were barely detectable. The catalytic activity of the ERKs paralleled their protein levels in all of the brain regions except the hippocampus, in which the activity and phosphotyrosine content were disproportionately high. As a possible explanation for this apparent disparity, the regional distribution of ERK kinase (MEK), which phosphorylates and activates the ERKs, was also investigated. The levels of immunoreactivity of the M(r) 45 kDa ERK kinase band differed by about threefold among the brain regions, with the highest levels being present in nucleus accumbens, hippocampus, substantia nigra, and caudate/putamen. Therefore, a higher concentration of ERK kinase immunoreactivity did not appear to account for the disproportionate levels of ERK activity and phosphotyrosine content in the hippocampus. Potential regulation of ERK and ERK kinase levels was also investigated in rats subjected to chronic morphine treatment. ERK1 and ERK2 levels were increased selectively in locus coeruleus and caudate/putamen after chronic morphine treatment, whereas ERK kinase immunoreactivity remained unchanged in all of the brain regions analyzed. In summary, the regional differences in ERK and ERK kinase expression and the region-specific regulation of ERK expression suggest that ERK-related signaling may play an important role in CNS function and its adaptive responses.
Regulators of G-protein signaling (RGS) proteins act as GTPase-activating proteins (GAPs) for ␣ subunits of heterotrimeric G-proteins. Previous in situ hybridization analysis of mRNAs encoding RGS3-RGS11 revealed region-specific expression patterns in rat brain. RGS9 showed a particularly striking pattern of almost exclusive enrichment in striatum. In a parallel study, RGS9 cDNA, here referred to as RGS9-1, was cloned from retinal cDNA libraries, and the encoded protein was identified as a GAP for transducin (G␣ t ) in rod outer segments. In the present study we identify a novel splice variant of RGS9, RGS9-2, cloned from a mouse forebrain cDNA library, which encodes a striatal-specific isoform of the protein. RGS9-2 is 191 amino acids longer than the retinal isoform, has a unique 3Ј untranslated region, and is highly enriched in striatum, with much lower levels seen in other brain regions and no expression detectable in retina. Immunohistochemistry showed that RGS9-2 protein is restricted to striatal neuropil and absent in striatal terminal fields. The functional activity of RGS9-2 is supported by the finding that it, but not RGS9-1, dampens the G i/o -coupled -opioid receptor response in vitro. Characterization of a bacterial artificial chromosome genomic clone of ϳ200 kb indicates that these isoforms represent alternatively spliced mRNAs from a single gene and that the RGS domain, conserved among all known RGS members, is encoded over three distinct exons. The distinct C-terminal domains of RGS9-2 and RGS9-1 presumably contribute to unique regulatory properties in the neural and retinal cells in which these proteins are selectively expressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.